Metamath Proof Explorer


Theorem rerest

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses tgioo2.1
|- J = ( TopOpen ` CCfld )
rerest.2
|- R = ( topGen ` ran (,) )
Assertion rerest
|- ( A C_ RR -> ( J |`t A ) = ( R |`t A ) )

Proof

Step Hyp Ref Expression
1 tgioo2.1
 |-  J = ( TopOpen ` CCfld )
2 rerest.2
 |-  R = ( topGen ` ran (,) )
3 1 tgioo2
 |-  ( topGen ` ran (,) ) = ( J |`t RR )
4 2 3 eqtri
 |-  R = ( J |`t RR )
5 4 oveq1i
 |-  ( R |`t A ) = ( ( J |`t RR ) |`t A )
6 1 cnfldtop
 |-  J e. Top
7 reex
 |-  RR e. _V
8 restabs
 |-  ( ( J e. Top /\ A C_ RR /\ RR e. _V ) -> ( ( J |`t RR ) |`t A ) = ( J |`t A ) )
9 6 7 8 mp3an13
 |-  ( A C_ RR -> ( ( J |`t RR ) |`t A ) = ( J |`t A ) )
10 5 9 eqtr2id
 |-  ( A C_ RR -> ( J |`t A ) = ( R |`t A ) )