Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rerisefaccl | |- ( ( A e. RR /\ N e. NN0 ) -> ( A RiseFac N ) e. RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-resscn | |- RR C_ CC | |
| 2 | 1re | |- 1 e. RR | |
| 3 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) | |
| 4 | nn0re | |- ( k e. NN0 -> k e. RR ) | |
| 5 | readdcl | |- ( ( A e. RR /\ k e. RR ) -> ( A + k ) e. RR ) | |
| 6 | 4 5 | sylan2 | |- ( ( A e. RR /\ k e. NN0 ) -> ( A + k ) e. RR ) | 
| 7 | 1 2 3 6 | risefaccllem | |- ( ( A e. RR /\ N e. NN0 ) -> ( A RiseFac N ) e. RR ) |