Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rerisefaccl | |- ( ( A e. RR /\ N e. NN0 ) -> ( A RiseFac N ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn | |- RR C_ CC |
|
2 | 1re | |- 1 e. RR |
|
3 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
4 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
5 | readdcl | |- ( ( A e. RR /\ k e. RR ) -> ( A + k ) e. RR ) |
|
6 | 4 5 | sylan2 | |- ( ( A e. RR /\ k e. NN0 ) -> ( A + k ) e. RR ) |
7 | 1 2 3 6 | risefaccllem | |- ( ( A e. RR /\ N e. NN0 ) -> ( A RiseFac N ) e. RR ) |