Metamath Proof Explorer


Theorem rerpdivcld

Description: Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
rpgecld.2
|- ( ph -> B e. RR+ )
Assertion rerpdivcld
|- ( ph -> ( A / B ) e. RR )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 rpgecld.2
 |-  ( ph -> B e. RR+ )
3 rerpdivcl
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A / B ) e. RR )