Description: Absorption law for restriction. Exercise 17 of TakeutiZaring p. 25. (Contributed by NM, 9-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resabs1 | |- ( B C_ C -> ( ( A |` C ) |` B ) = ( A |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres | |- ( ( A |` C ) |` B ) = ( A |` ( C i^i B ) ) |
|
| 2 | sseqin2 | |- ( B C_ C <-> ( C i^i B ) = B ) |
|
| 3 | reseq2 | |- ( ( C i^i B ) = B -> ( A |` ( C i^i B ) ) = ( A |` B ) ) |
|
| 4 | 2 3 | sylbi | |- ( B C_ C -> ( A |` ( C i^i B ) ) = ( A |` B ) ) |
| 5 | 1 4 | eqtrid | |- ( B C_ C -> ( ( A |` C ) |` B ) = ( A |` B ) ) |