Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
2 |
|
fnresdm |
|- ( G Fn B -> ( G |` B ) = G ) |
3 |
|
uneq12 |
|- ( ( ( F |` A ) = F /\ ( G |` B ) = G ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( F Fn A /\ G Fn B ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
5 |
4
|
3adant3 |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( F u. G ) ) |
6 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
7 |
6
|
reseq2i |
|- ( F |` ( ( A i^i B ) u. ( A \ B ) ) ) = ( F |` A ) |
8 |
|
resundi |
|- ( F |` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) |
9 |
7 8
|
eqtr3i |
|- ( F |` A ) = ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) |
10 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
11 |
10
|
uneq1i |
|- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
12 |
|
inundif |
|- ( ( B i^i A ) u. ( B \ A ) ) = B |
13 |
11 12
|
eqtri |
|- ( ( A i^i B ) u. ( B \ A ) ) = B |
14 |
13
|
reseq2i |
|- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( G |` B ) |
15 |
|
resundi |
|- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
16 |
14 15
|
eqtr3i |
|- ( G |` B ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
17 |
9 16
|
uneq12i |
|- ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) |
18 |
|
simp3 |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
19 |
18
|
uneq1d |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) |
20 |
19
|
uneq2d |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
21 |
17 20
|
eqtr4id |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
22 |
|
un4 |
|- ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A \ B ) ) ) u. ( ( F |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |
23 |
21 22
|
eqtrdi |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
24 |
|
unidm |
|- ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) = ( F |` ( A i^i B ) ) |
25 |
24
|
uneq1i |
|- ( ( ( F |` ( A i^i B ) ) u. ( F |` ( A i^i B ) ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |
26 |
23 25
|
eqtrdi |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` A ) u. ( G |` B ) ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
27 |
5 26
|
eqtr3d |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |