Step |
Hyp |
Ref |
Expression |
1 |
|
rescabs.c |
|- ( ph -> C e. V ) |
2 |
|
rescabs.h |
|- ( ph -> H Fn ( S X. S ) ) |
3 |
|
rescabs.j |
|- ( ph -> J Fn ( T X. T ) ) |
4 |
|
rescabs.s |
|- ( ph -> S e. W ) |
5 |
|
rescabs.t |
|- ( ph -> T C_ S ) |
6 |
|
eqid |
|- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) |
7 |
|
ovexd |
|- ( ph -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
8 |
4 5
|
ssexd |
|- ( ph -> T e. _V ) |
9 |
6 7 8 3
|
rescval2 |
|- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
10 |
|
simpr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( Base ` ( C |`s S ) ) C_ T ) |
11 |
|
ovexd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
12 |
8
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
13 |
|
eqid |
|- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) |
14 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
15 |
|
1re |
|- 1 e. RR |
16 |
|
1nn |
|- 1 e. NN |
17 |
|
4nn0 |
|- 4 e. NN0 |
18 |
|
1nn0 |
|- 1 e. NN0 |
19 |
|
1lt10 |
|- 1 < ; 1 0 |
20 |
16 17 18 19
|
declti |
|- 1 < ; 1 4 |
21 |
15 20
|
ltneii |
|- 1 =/= ; 1 4 |
22 |
|
basendx |
|- ( Base ` ndx ) = 1 |
23 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
24 |
22 23
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) <-> 1 =/= ; 1 4 ) |
25 |
21 24
|
mpbir |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
26 |
14 25
|
setsnid |
|- ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
27 |
13 26
|
ressid2 |
|- ( ( ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
28 |
10 11 12 27
|
syl3anc |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
29 |
28
|
oveq1d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
30 |
|
ovex |
|- ( C |`s S ) e. _V |
31 |
8 8
|
xpexd |
|- ( ph -> ( T X. T ) e. _V ) |
32 |
|
fnex |
|- ( ( J Fn ( T X. T ) /\ ( T X. T ) e. _V ) -> J e. _V ) |
33 |
3 31 32
|
syl2anc |
|- ( ph -> J e. _V ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
35 |
|
setsabs |
|- ( ( ( C |`s S ) e. _V /\ J e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
36 |
30 34 35
|
sylancr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
37 |
|
eqid |
|- ( C |`s S ) = ( C |`s S ) |
38 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
39 |
37 38
|
ressbas |
|- ( S e. W -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
40 |
4 39
|
syl |
|- ( ph -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
41 |
40
|
sseq1d |
|- ( ph -> ( ( S i^i ( Base ` C ) ) C_ T <-> ( Base ` ( C |`s S ) ) C_ T ) ) |
42 |
41
|
biimpar |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ T ) |
43 |
|
inss2 |
|- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
44 |
43
|
a1i |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
45 |
42 44
|
ssind |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( T i^i ( Base ` C ) ) ) |
46 |
5
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
47 |
46
|
ssrind |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` C ) ) C_ ( S i^i ( Base ` C ) ) ) |
48 |
45 47
|
eqssd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) = ( T i^i ( Base ` C ) ) ) |
49 |
48
|
oveq2d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
50 |
4
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> S e. W ) |
51 |
38
|
ressinbas |
|- ( S e. W -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
52 |
50 51
|
syl |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
53 |
38
|
ressinbas |
|- ( T e. _V -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
54 |
12 53
|
syl |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
55 |
49 52 54
|
3eqtr4d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s T ) ) |
56 |
55
|
oveq1d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
57 |
29 36 56
|
3eqtrd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
58 |
|
simpr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> -. ( Base ` ( C |`s S ) ) C_ T ) |
59 |
|
ovexd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
60 |
8
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
61 |
13 26
|
ressval2 |
|- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
62 |
58 59 60 61
|
syl3anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
63 |
|
ovexd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) e. _V ) |
64 |
25
|
necomi |
|- ( Hom ` ndx ) =/= ( Base ` ndx ) |
65 |
64
|
a1i |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
66 |
4 4
|
xpexd |
|- ( ph -> ( S X. S ) e. _V ) |
67 |
|
fnex |
|- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
68 |
2 66 67
|
syl2anc |
|- ( ph -> H e. _V ) |
69 |
68
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> H e. _V ) |
70 |
|
fvex |
|- ( Base ` ( C |`s S ) ) e. _V |
71 |
70
|
inex2 |
|- ( T i^i ( Base ` ( C |`s S ) ) ) e. _V |
72 |
71
|
a1i |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) |
73 |
|
fvex |
|- ( Hom ` ndx ) e. _V |
74 |
|
fvex |
|- ( Base ` ndx ) e. _V |
75 |
73 74
|
setscom |
|- ( ( ( ( C |`s S ) e. _V /\ ( Hom ` ndx ) =/= ( Base ` ndx ) ) /\ ( H e. _V /\ ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
76 |
63 65 69 72 75
|
syl22anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
77 |
|
eqid |
|- ( ( C |`s S ) |`s T ) = ( ( C |`s S ) |`s T ) |
78 |
|
eqid |
|- ( Base ` ( C |`s S ) ) = ( Base ` ( C |`s S ) ) |
79 |
77 78
|
ressval2 |
|- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( C |`s S ) e. _V /\ T e. _V ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
80 |
58 63 60 79
|
syl3anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
81 |
4
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> S e. W ) |
82 |
5
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
83 |
|
ressabs |
|- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
84 |
81 82 83
|
syl2anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
85 |
80 84
|
eqtr3d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( C |`s T ) ) |
86 |
85
|
oveq1d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
87 |
62 76 86
|
3eqtrd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
88 |
87
|
oveq1d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
89 |
|
ovex |
|- ( C |`s T ) e. _V |
90 |
33
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
91 |
|
setsabs |
|- ( ( ( C |`s T ) e. _V /\ J e. _V ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
92 |
89 90 91
|
sylancr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
93 |
88 92
|
eqtrd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
94 |
57 93
|
pm2.61dan |
|- ( ph -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
95 |
9 94
|
eqtrd |
|- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
96 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
97 |
96 1 4 2
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
98 |
97
|
oveq1d |
|- ( ph -> ( ( C |`cat H ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) ) |
99 |
|
eqid |
|- ( C |`cat J ) = ( C |`cat J ) |
100 |
99 1 8 3
|
rescval2 |
|- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
101 |
95 98 100
|
3eqtr4d |
|- ( ph -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |