| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescabs.c |
|- ( ph -> C e. V ) |
| 2 |
|
rescabs.h |
|- ( ph -> H Fn ( S X. S ) ) |
| 3 |
|
rescabs.j |
|- ( ph -> J Fn ( T X. T ) ) |
| 4 |
|
rescabs.s |
|- ( ph -> S e. W ) |
| 5 |
|
rescabs.t |
|- ( ph -> T C_ S ) |
| 6 |
|
eqid |
|- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) |
| 7 |
|
ovexd |
|- ( ph -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
| 8 |
4 5
|
ssexd |
|- ( ph -> T e. _V ) |
| 9 |
6 7 8 3
|
rescval2 |
|- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( Base ` ( C |`s S ) ) C_ T ) |
| 11 |
|
ovexd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
| 12 |
8
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
| 13 |
|
eqid |
|- ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) |
| 14 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 15 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 16 |
15
|
simp1i |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 17 |
14 16
|
setsnid |
|- ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 18 |
13 17
|
ressid2 |
|- ( ( ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 19 |
10 11 12 18
|
syl3anc |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 20 |
19
|
oveq1d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 21 |
|
ovex |
|- ( C |`s S ) e. _V |
| 22 |
8 8
|
xpexd |
|- ( ph -> ( T X. T ) e. _V ) |
| 23 |
3 22
|
fnexd |
|- ( ph -> J e. _V ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
| 25 |
|
setsabs |
|- ( ( ( C |`s S ) e. _V /\ J e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 26 |
21 24 25
|
sylancr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 27 |
|
eqid |
|- ( C |`s S ) = ( C |`s S ) |
| 28 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 29 |
27 28
|
ressbas |
|- ( S e. W -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
| 30 |
4 29
|
syl |
|- ( ph -> ( S i^i ( Base ` C ) ) = ( Base ` ( C |`s S ) ) ) |
| 31 |
30
|
sseq1d |
|- ( ph -> ( ( S i^i ( Base ` C ) ) C_ T <-> ( Base ` ( C |`s S ) ) C_ T ) ) |
| 32 |
31
|
biimpar |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ T ) |
| 33 |
|
inss2 |
|- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
| 34 |
33
|
a1i |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
| 35 |
32 34
|
ssind |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) C_ ( T i^i ( Base ` C ) ) ) |
| 36 |
5
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
| 37 |
36
|
ssrind |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` C ) ) C_ ( S i^i ( Base ` C ) ) ) |
| 38 |
35 37
|
eqssd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( S i^i ( Base ` C ) ) = ( T i^i ( Base ` C ) ) ) |
| 39 |
38
|
oveq2d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 40 |
4
|
adantr |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> S e. W ) |
| 41 |
28
|
ressinbas |
|- ( S e. W -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 42 |
40 41
|
syl |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 43 |
28
|
ressinbas |
|- ( T e. _V -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 44 |
12 43
|
syl |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s T ) = ( C |`s ( T i^i ( Base ` C ) ) ) ) |
| 45 |
39 42 44
|
3eqtr4d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) = ( C |`s T ) ) |
| 46 |
45
|
oveq1d |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 47 |
20 26 46
|
3eqtrd |
|- ( ( ph /\ ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 48 |
|
simpr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> -. ( Base ` ( C |`s S ) ) C_ T ) |
| 49 |
|
ovexd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V ) |
| 50 |
8
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T e. _V ) |
| 51 |
13 17
|
ressval2 |
|- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) e. _V /\ T e. _V ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 52 |
48 49 50 51
|
syl3anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 53 |
|
ovexd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( C |`s S ) e. _V ) |
| 54 |
16
|
necomi |
|- ( Hom ` ndx ) =/= ( Base ` ndx ) |
| 55 |
54
|
a1i |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 56 |
4 4
|
xpexd |
|- ( ph -> ( S X. S ) e. _V ) |
| 57 |
2 56
|
fnexd |
|- ( ph -> H e. _V ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> H e. _V ) |
| 59 |
|
fvex |
|- ( Base ` ( C |`s S ) ) e. _V |
| 60 |
59
|
inex2 |
|- ( T i^i ( Base ` ( C |`s S ) ) ) e. _V |
| 61 |
60
|
a1i |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) |
| 62 |
|
fvex |
|- ( Hom ` ndx ) e. _V |
| 63 |
|
fvex |
|- ( Base ` ndx ) e. _V |
| 64 |
62 63
|
setscom |
|- ( ( ( ( C |`s S ) e. _V /\ ( Hom ` ndx ) =/= ( Base ` ndx ) ) /\ ( H e. _V /\ ( T i^i ( Base ` ( C |`s S ) ) ) e. _V ) ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 65 |
53 55 58 61 64
|
syl22anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 66 |
|
eqid |
|- ( ( C |`s S ) |`s T ) = ( ( C |`s S ) |`s T ) |
| 67 |
|
eqid |
|- ( Base ` ( C |`s S ) ) = ( Base ` ( C |`s S ) ) |
| 68 |
66 67
|
ressval2 |
|- ( ( -. ( Base ` ( C |`s S ) ) C_ T /\ ( C |`s S ) e. _V /\ T e. _V ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 69 |
48 53 50 68
|
syl3anc |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) ) |
| 70 |
5
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> T C_ S ) |
| 71 |
|
ressabs |
|- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 72 |
4 70 71
|
syl2an2r |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 73 |
69 72
|
eqtr3d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) = ( C |`s T ) ) |
| 74 |
73
|
oveq1d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Base ` ndx ) , ( T i^i ( Base ` ( C |`s S ) ) ) >. ) sSet <. ( Hom ` ndx ) , H >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 75 |
52 65 74
|
3eqtrd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 76 |
75
|
oveq1d |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 77 |
|
ovex |
|- ( C |`s T ) e. _V |
| 78 |
23
|
adantr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> J e. _V ) |
| 79 |
|
setsabs |
|- ( ( ( C |`s T ) e. _V /\ J e. _V ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 80 |
77 78 79
|
sylancr |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( C |`s T ) sSet <. ( Hom ` ndx ) , H >. ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 81 |
76 80
|
eqtrd |
|- ( ( ph /\ -. ( Base ` ( C |`s S ) ) C_ T ) -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 82 |
47 81
|
pm2.61dan |
|- ( ph -> ( ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 83 |
9 82
|
eqtrd |
|- ( ph -> ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 84 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
| 85 |
84 1 4 2
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 86 |
85
|
oveq1d |
|- ( ph -> ( ( C |`cat H ) |`cat J ) = ( ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) |`cat J ) ) |
| 87 |
|
eqid |
|- ( C |`cat J ) = ( C |`cat J ) |
| 88 |
87 1 8 3
|
rescval2 |
|- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 89 |
83 86 88
|
3eqtr4d |
|- ( ph -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |