Step |
Hyp |
Ref |
Expression |
1 |
|
rescabs2.c |
|- ( ph -> C e. V ) |
2 |
|
rescabs2.j |
|- ( ph -> J Fn ( T X. T ) ) |
3 |
|
rescabs2.s |
|- ( ph -> S e. W ) |
4 |
|
rescabs2.t |
|- ( ph -> T C_ S ) |
5 |
|
ressabs |
|- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ph -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
7 |
6
|
oveq1d |
|- ( ph -> ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
8 |
|
eqid |
|- ( ( C |`s S ) |`cat J ) = ( ( C |`s S ) |`cat J ) |
9 |
|
ovexd |
|- ( ph -> ( C |`s S ) e. _V ) |
10 |
3 4
|
ssexd |
|- ( ph -> T e. _V ) |
11 |
8 9 10 2
|
rescval2 |
|- ( ph -> ( ( C |`s S ) |`cat J ) = ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
12 |
|
eqid |
|- ( C |`cat J ) = ( C |`cat J ) |
13 |
12 1 10 2
|
rescval2 |
|- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
14 |
7 11 13
|
3eqtr4d |
|- ( ph -> ( ( C |`s S ) |`cat J ) = ( C |`cat J ) ) |