| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescabs2.c |
|- ( ph -> C e. V ) |
| 2 |
|
rescabs2.j |
|- ( ph -> J Fn ( T X. T ) ) |
| 3 |
|
rescabs2.s |
|- ( ph -> S e. W ) |
| 4 |
|
rescabs2.t |
|- ( ph -> T C_ S ) |
| 5 |
|
ressabs |
|- ( ( S e. W /\ T C_ S ) -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ph -> ( ( C |`s S ) |`s T ) = ( C |`s T ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 8 |
|
eqid |
|- ( ( C |`s S ) |`cat J ) = ( ( C |`s S ) |`cat J ) |
| 9 |
|
ovexd |
|- ( ph -> ( C |`s S ) e. _V ) |
| 10 |
3 4
|
ssexd |
|- ( ph -> T e. _V ) |
| 11 |
8 9 10 2
|
rescval2 |
|- ( ph -> ( ( C |`s S ) |`cat J ) = ( ( ( C |`s S ) |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 12 |
|
eqid |
|- ( C |`cat J ) = ( C |`cat J ) |
| 13 |
12 1 10 2
|
rescval2 |
|- ( ph -> ( C |`cat J ) = ( ( C |`s T ) sSet <. ( Hom ` ndx ) , J >. ) ) |
| 14 |
7 11 13
|
3eqtr4d |
|- ( ph -> ( ( C |`s S ) |`cat J ) = ( C |`cat J ) ) |