| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescbas.d |  |-  D = ( C |`cat H ) | 
						
							| 2 |  | rescbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rescbas.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | rescbas.h |  |-  ( ph -> H Fn ( S X. S ) ) | 
						
							| 5 |  | rescbas.s |  |-  ( ph -> S C_ B ) | 
						
							| 6 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 7 |  | slotsbhcdif |  |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) | 
						
							| 8 | 7 | simp1i |  |-  ( Base ` ndx ) =/= ( Hom ` ndx ) | 
						
							| 9 | 6 8 | setsnid |  |-  ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) | 
						
							| 10 |  | eqid |  |-  ( C |`s S ) = ( C |`s S ) | 
						
							| 11 | 10 2 | ressbas2 |  |-  ( S C_ B -> S = ( Base ` ( C |`s S ) ) ) | 
						
							| 12 | 5 11 | syl |  |-  ( ph -> S = ( Base ` ( C |`s S ) ) ) | 
						
							| 13 | 2 | fvexi |  |-  B e. _V | 
						
							| 14 | 13 | ssex |  |-  ( S C_ B -> S e. _V ) | 
						
							| 15 | 5 14 | syl |  |-  ( ph -> S e. _V ) | 
						
							| 16 | 1 3 15 4 | rescval2 |  |-  ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ph -> ( Base ` D ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) | 
						
							| 18 | 9 12 17 | 3eqtr4a |  |-  ( ph -> S = ( Base ` D ) ) |