Metamath Proof Explorer


Theorem rescco

Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses rescbas.d
|- D = ( C |`cat H )
rescbas.b
|- B = ( Base ` C )
rescbas.c
|- ( ph -> C e. V )
rescbas.h
|- ( ph -> H Fn ( S X. S ) )
rescbas.s
|- ( ph -> S C_ B )
rescco.o
|- .x. = ( comp ` C )
Assertion rescco
|- ( ph -> .x. = ( comp ` D ) )

Proof

Step Hyp Ref Expression
1 rescbas.d
 |-  D = ( C |`cat H )
2 rescbas.b
 |-  B = ( Base ` C )
3 rescbas.c
 |-  ( ph -> C e. V )
4 rescbas.h
 |-  ( ph -> H Fn ( S X. S ) )
5 rescbas.s
 |-  ( ph -> S C_ B )
6 rescco.o
 |-  .x. = ( comp ` C )
7 ccoid
 |-  comp = Slot ( comp ` ndx )
8 slotsbhcdif
 |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )
9 simp3
 |-  ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( comp ` ndx ) )
10 9 necomd
 |-  ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Hom ` ndx ) )
11 8 10 ax-mp
 |-  ( comp ` ndx ) =/= ( Hom ` ndx )
12 7 11 setsnid
 |-  ( comp ` ( C |`s S ) ) = ( comp ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) )
13 2 fvexi
 |-  B e. _V
14 13 ssex
 |-  ( S C_ B -> S e. _V )
15 5 14 syl
 |-  ( ph -> S e. _V )
16 eqid
 |-  ( C |`s S ) = ( C |`s S )
17 16 6 ressco
 |-  ( S e. _V -> .x. = ( comp ` ( C |`s S ) ) )
18 15 17 syl
 |-  ( ph -> .x. = ( comp ` ( C |`s S ) ) )
19 1 3 15 4 rescval2
 |-  ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) )
20 19 fveq2d
 |-  ( ph -> ( comp ` D ) = ( comp ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) )
21 12 18 20 3eqtr4a
 |-  ( ph -> .x. = ( comp ` D ) )