Step |
Hyp |
Ref |
Expression |
1 |
|
rescfth.d |
|- D = ( C |`cat J ) |
2 |
|
rescfth.i |
|- I = ( idFunc ` D ) |
3 |
1
|
oveq2i |
|- ( D Faith D ) = ( D Faith ( C |`cat J ) ) |
4 |
|
fthres2 |
|- ( J e. ( Subcat ` C ) -> ( D Faith ( C |`cat J ) ) C_ ( D Faith C ) ) |
5 |
3 4
|
eqsstrid |
|- ( J e. ( Subcat ` C ) -> ( D Faith D ) C_ ( D Faith C ) ) |
6 |
|
id |
|- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
7 |
1 6
|
subccat |
|- ( J e. ( Subcat ` C ) -> D e. Cat ) |
8 |
2
|
idffth |
|- ( D e. Cat -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
9 |
7 8
|
syl |
|- ( J e. ( Subcat ` C ) -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
10 |
9
|
elin2d |
|- ( J e. ( Subcat ` C ) -> I e. ( D Faith D ) ) |
11 |
5 10
|
sseldd |
|- ( J e. ( Subcat ` C ) -> I e. ( D Faith C ) ) |