Metamath Proof Explorer


Theorem reschom

Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescbas.d
|- D = ( C |`cat H )
rescbas.b
|- B = ( Base ` C )
rescbas.c
|- ( ph -> C e. V )
rescbas.h
|- ( ph -> H Fn ( S X. S ) )
rescbas.s
|- ( ph -> S C_ B )
Assertion reschom
|- ( ph -> H = ( Hom ` D ) )

Proof

Step Hyp Ref Expression
1 rescbas.d
 |-  D = ( C |`cat H )
2 rescbas.b
 |-  B = ( Base ` C )
3 rescbas.c
 |-  ( ph -> C e. V )
4 rescbas.h
 |-  ( ph -> H Fn ( S X. S ) )
5 rescbas.s
 |-  ( ph -> S C_ B )
6 ovex
 |-  ( C |`s S ) e. _V
7 2 fvexi
 |-  B e. _V
8 7 ssex
 |-  ( S C_ B -> S e. _V )
9 5 8 syl
 |-  ( ph -> S e. _V )
10 9 9 xpexd
 |-  ( ph -> ( S X. S ) e. _V )
11 fnex
 |-  ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V )
12 4 10 11 syl2anc
 |-  ( ph -> H e. _V )
13 homid
 |-  Hom = Slot ( Hom ` ndx )
14 13 setsid
 |-  ( ( ( C |`s S ) e. _V /\ H e. _V ) -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) )
15 6 12 14 sylancr
 |-  ( ph -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) )
16 1 3 9 4 rescval2
 |-  ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) )
17 16 fveq2d
 |-  ( ph -> ( Hom ` D ) = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) )
18 15 17 eqtr4d
 |-  ( ph -> H = ( Hom ` D ) )