| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescbas.d |  |-  D = ( C |`cat H ) | 
						
							| 2 |  | rescbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rescbas.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | rescbas.h |  |-  ( ph -> H Fn ( S X. S ) ) | 
						
							| 5 |  | rescbas.s |  |-  ( ph -> S C_ B ) | 
						
							| 6 |  | ovex |  |-  ( C |`s S ) e. _V | 
						
							| 7 | 2 | fvexi |  |-  B e. _V | 
						
							| 8 | 7 | ssex |  |-  ( S C_ B -> S e. _V ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> S e. _V ) | 
						
							| 10 | 9 9 | xpexd |  |-  ( ph -> ( S X. S ) e. _V ) | 
						
							| 11 |  | fnex |  |-  ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) | 
						
							| 12 | 4 10 11 | syl2anc |  |-  ( ph -> H e. _V ) | 
						
							| 13 |  | homid |  |-  Hom = Slot ( Hom ` ndx ) | 
						
							| 14 | 13 | setsid |  |-  ( ( ( C |`s S ) e. _V /\ H e. _V ) -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) | 
						
							| 15 | 6 12 14 | sylancr |  |-  ( ph -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) | 
						
							| 16 | 1 3 9 4 | rescval2 |  |-  ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ph -> ( Hom ` D ) = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) | 
						
							| 18 | 15 17 | eqtr4d |  |-  ( ph -> H = ( Hom ` D ) ) |