Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
|- D = ( C |`cat H ) |
2 |
|
rescbas.b |
|- B = ( Base ` C ) |
3 |
|
rescbas.c |
|- ( ph -> C e. V ) |
4 |
|
rescbas.h |
|- ( ph -> H Fn ( S X. S ) ) |
5 |
|
rescbas.s |
|- ( ph -> S C_ B ) |
6 |
|
ovex |
|- ( C |`s S ) e. _V |
7 |
2
|
fvexi |
|- B e. _V |
8 |
7
|
ssex |
|- ( S C_ B -> S e. _V ) |
9 |
5 8
|
syl |
|- ( ph -> S e. _V ) |
10 |
9 9
|
xpexd |
|- ( ph -> ( S X. S ) e. _V ) |
11 |
|
fnex |
|- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
12 |
4 10 11
|
syl2anc |
|- ( ph -> H e. _V ) |
13 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
14 |
13
|
setsid |
|- ( ( ( C |`s S ) e. _V /\ H e. _V ) -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
15 |
6 12 14
|
sylancr |
|- ( ph -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
16 |
1 3 9 4
|
rescval2 |
|- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
17 |
16
|
fveq2d |
|- ( ph -> ( Hom ` D ) = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
18 |
15 17
|
eqtr4d |
|- ( ph -> H = ( Hom ` D ) ) |