Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
|- D = ( C |`cat H ) |
2 |
|
rescbas.b |
|- B = ( Base ` C ) |
3 |
|
rescbas.c |
|- ( ph -> C e. V ) |
4 |
|
rescbas.h |
|- ( ph -> H Fn ( S X. S ) ) |
5 |
|
rescbas.s |
|- ( ph -> S C_ B ) |
6 |
1 2 3 4 5
|
reschom |
|- ( ph -> H = ( Hom ` D ) ) |
7 |
1 2 3 4 5
|
rescbas |
|- ( ph -> S = ( Base ` D ) ) |
8 |
7
|
sqxpeqd |
|- ( ph -> ( S X. S ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
9 |
6 8
|
fneq12d |
|- ( ph -> ( H Fn ( S X. S ) <-> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) ) |
10 |
4 9
|
mpbid |
|- ( ph -> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
11 |
|
fnov |
|- ( ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
12 |
10 11
|
sylib |
|- ( ph -> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
13 |
6 12
|
eqtrd |
|- ( ph -> H = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
14 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
16 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
17 |
14 15 16
|
homffval |
|- ( Homf ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) |
18 |
13 17
|
eqtr4di |
|- ( ph -> H = ( Homf ` D ) ) |