| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rescbas.d |  |-  D = ( C |`cat H ) | 
						
							| 2 |  | rescbas.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rescbas.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | rescbas.h |  |-  ( ph -> H Fn ( S X. S ) ) | 
						
							| 5 |  | rescbas.s |  |-  ( ph -> S C_ B ) | 
						
							| 6 | 1 2 3 4 5 | reschom |  |-  ( ph -> H = ( Hom ` D ) ) | 
						
							| 7 | 1 2 3 4 5 | rescbas |  |-  ( ph -> S = ( Base ` D ) ) | 
						
							| 8 | 7 | sqxpeqd |  |-  ( ph -> ( S X. S ) = ( ( Base ` D ) X. ( Base ` D ) ) ) | 
						
							| 9 | 6 8 | fneq12d |  |-  ( ph -> ( H Fn ( S X. S ) <-> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) ) | 
						
							| 10 | 4 9 | mpbid |  |-  ( ph -> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) | 
						
							| 11 |  | fnov |  |-  ( ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ph -> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) | 
						
							| 13 | 6 12 | eqtrd |  |-  ( ph -> H = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) | 
						
							| 14 |  | eqid |  |-  ( Homf ` D ) = ( Homf ` D ) | 
						
							| 15 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 16 |  | eqid |  |-  ( Hom ` D ) = ( Hom ` D ) | 
						
							| 17 | 14 15 16 | homffval |  |-  ( Homf ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) | 
						
							| 18 | 13 17 | eqtr4di |  |-  ( ph -> H = ( Homf ` D ) ) |