Metamath Proof Explorer


Theorem rescom

Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)

Ref Expression
Assertion rescom
|- ( ( A |` B ) |` C ) = ( ( A |` C ) |` B )

Proof

Step Hyp Ref Expression
1 incom
 |-  ( B i^i C ) = ( C i^i B )
2 1 reseq2i
 |-  ( A |` ( B i^i C ) ) = ( A |` ( C i^i B ) )
3 resres
 |-  ( ( A |` B ) |` C ) = ( A |` ( B i^i C ) )
4 resres
 |-  ( ( A |` C ) |` B ) = ( A |` ( C i^i B ) )
5 2 3 4 3eqtr4i
 |-  ( ( A |` B ) |` C ) = ( ( A |` C ) |` B )