Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | rescom | |- ( ( A |` B ) |` C ) = ( ( A |` C ) |` B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom | |- ( B i^i C ) = ( C i^i B ) |
|
2 | 1 | reseq2i | |- ( A |` ( B i^i C ) ) = ( A |` ( C i^i B ) ) |
3 | resres | |- ( ( A |` B ) |` C ) = ( A |` ( B i^i C ) ) |
|
4 | resres | |- ( ( A |` C ) |` B ) = ( A |` ( C i^i B ) ) |
|
5 | 2 3 4 | 3eqtr4i | |- ( ( A |` B ) |` C ) = ( ( A |` C ) |` B ) |