| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fofun |
|- ( ( F |` A ) : A -onto-> C -> Fun ( F |` A ) ) |
| 2 |
|
difss |
|- ( A \ B ) C_ A |
| 3 |
|
fof |
|- ( ( F |` A ) : A -onto-> C -> ( F |` A ) : A --> C ) |
| 4 |
3
|
fdmd |
|- ( ( F |` A ) : A -onto-> C -> dom ( F |` A ) = A ) |
| 5 |
2 4
|
sseqtrrid |
|- ( ( F |` A ) : A -onto-> C -> ( A \ B ) C_ dom ( F |` A ) ) |
| 6 |
|
fores |
|- ( ( Fun ( F |` A ) /\ ( A \ B ) C_ dom ( F |` A ) ) -> ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
| 7 |
1 5 6
|
syl2anc |
|- ( ( F |` A ) : A -onto-> C -> ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
| 8 |
|
resres |
|- ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A i^i ( A \ B ) ) ) |
| 9 |
|
indif |
|- ( A i^i ( A \ B ) ) = ( A \ B ) |
| 10 |
9
|
reseq2i |
|- ( F |` ( A i^i ( A \ B ) ) ) = ( F |` ( A \ B ) ) |
| 11 |
8 10
|
eqtri |
|- ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A \ B ) ) |
| 12 |
|
foeq1 |
|- ( ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A \ B ) ) -> ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) ) |
| 13 |
11 12
|
ax-mp |
|- ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
| 14 |
11
|
rneqi |
|- ran ( ( F |` A ) |` ( A \ B ) ) = ran ( F |` ( A \ B ) ) |
| 15 |
|
df-ima |
|- ( ( F |` A ) " ( A \ B ) ) = ran ( ( F |` A ) |` ( A \ B ) ) |
| 16 |
|
df-ima |
|- ( F " ( A \ B ) ) = ran ( F |` ( A \ B ) ) |
| 17 |
14 15 16
|
3eqtr4i |
|- ( ( F |` A ) " ( A \ B ) ) = ( F " ( A \ B ) ) |
| 18 |
|
foeq3 |
|- ( ( ( F |` A ) " ( A \ B ) ) = ( F " ( A \ B ) ) -> ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) ) |
| 19 |
17 18
|
ax-mp |
|- ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
| 20 |
13 19
|
bitri |
|- ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
| 21 |
7 20
|
sylib |
|- ( ( F |` A ) : A -onto-> C -> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
| 22 |
|
funres11 |
|- ( Fun `' F -> Fun `' ( F |` ( A \ B ) ) ) |
| 23 |
|
dff1o3 |
|- ( ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) <-> ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) /\ Fun `' ( F |` ( A \ B ) ) ) ) |
| 24 |
23
|
biimpri |
|- ( ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) /\ Fun `' ( F |` ( A \ B ) ) ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
| 25 |
21 22 24
|
syl2anr |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
| 26 |
25
|
3adant3 |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
| 27 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
| 28 |
|
forn |
|- ( ( F |` A ) : A -onto-> C -> ran ( F |` A ) = C ) |
| 29 |
27 28
|
eqtrid |
|- ( ( F |` A ) : A -onto-> C -> ( F " A ) = C ) |
| 30 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
| 31 |
|
forn |
|- ( ( F |` B ) : B -onto-> D -> ran ( F |` B ) = D ) |
| 32 |
30 31
|
eqtrid |
|- ( ( F |` B ) : B -onto-> D -> ( F " B ) = D ) |
| 33 |
29 32
|
anim12i |
|- ( ( ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( ( F " A ) = C /\ ( F " B ) = D ) ) |
| 34 |
|
imadif |
|- ( Fun `' F -> ( F " ( A \ B ) ) = ( ( F " A ) \ ( F " B ) ) ) |
| 35 |
|
difeq12 |
|- ( ( ( F " A ) = C /\ ( F " B ) = D ) -> ( ( F " A ) \ ( F " B ) ) = ( C \ D ) ) |
| 36 |
34 35
|
sylan9eq |
|- ( ( Fun `' F /\ ( ( F " A ) = C /\ ( F " B ) = D ) ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
| 37 |
33 36
|
sylan2 |
|- ( ( Fun `' F /\ ( ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
| 38 |
37
|
3impb |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
| 39 |
38
|
f1oeq3d |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) ) ) |
| 40 |
26 39
|
mpbid |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) ) |