Step |
Hyp |
Ref |
Expression |
1 |
|
fofun |
|- ( ( F |` A ) : A -onto-> C -> Fun ( F |` A ) ) |
2 |
|
difss |
|- ( A \ B ) C_ A |
3 |
|
fof |
|- ( ( F |` A ) : A -onto-> C -> ( F |` A ) : A --> C ) |
4 |
3
|
fdmd |
|- ( ( F |` A ) : A -onto-> C -> dom ( F |` A ) = A ) |
5 |
2 4
|
sseqtrrid |
|- ( ( F |` A ) : A -onto-> C -> ( A \ B ) C_ dom ( F |` A ) ) |
6 |
|
fores |
|- ( ( Fun ( F |` A ) /\ ( A \ B ) C_ dom ( F |` A ) ) -> ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
7 |
1 5 6
|
syl2anc |
|- ( ( F |` A ) : A -onto-> C -> ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
8 |
|
resres |
|- ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A i^i ( A \ B ) ) ) |
9 |
|
indif |
|- ( A i^i ( A \ B ) ) = ( A \ B ) |
10 |
9
|
reseq2i |
|- ( F |` ( A i^i ( A \ B ) ) ) = ( F |` ( A \ B ) ) |
11 |
8 10
|
eqtri |
|- ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A \ B ) ) |
12 |
|
foeq1 |
|- ( ( ( F |` A ) |` ( A \ B ) ) = ( F |` ( A \ B ) ) -> ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) ) |
14 |
11
|
rneqi |
|- ran ( ( F |` A ) |` ( A \ B ) ) = ran ( F |` ( A \ B ) ) |
15 |
|
df-ima |
|- ( ( F |` A ) " ( A \ B ) ) = ran ( ( F |` A ) |` ( A \ B ) ) |
16 |
|
df-ima |
|- ( F " ( A \ B ) ) = ran ( F |` ( A \ B ) ) |
17 |
14 15 16
|
3eqtr4i |
|- ( ( F |` A ) " ( A \ B ) ) = ( F " ( A \ B ) ) |
18 |
|
foeq3 |
|- ( ( ( F |` A ) " ( A \ B ) ) = ( F " ( A \ B ) ) -> ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) ) |
19 |
17 18
|
ax-mp |
|- ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
20 |
13 19
|
bitri |
|- ( ( ( F |` A ) |` ( A \ B ) ) : ( A \ B ) -onto-> ( ( F |` A ) " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
21 |
7 20
|
sylib |
|- ( ( F |` A ) : A -onto-> C -> ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) ) |
22 |
|
funres11 |
|- ( Fun `' F -> Fun `' ( F |` ( A \ B ) ) ) |
23 |
|
dff1o3 |
|- ( ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) <-> ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) /\ Fun `' ( F |` ( A \ B ) ) ) ) |
24 |
23
|
biimpri |
|- ( ( ( F |` ( A \ B ) ) : ( A \ B ) -onto-> ( F " ( A \ B ) ) /\ Fun `' ( F |` ( A \ B ) ) ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
25 |
21 22 24
|
syl2anr |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
26 |
25
|
3adant3 |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) ) |
27 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
28 |
|
forn |
|- ( ( F |` A ) : A -onto-> C -> ran ( F |` A ) = C ) |
29 |
27 28
|
eqtrid |
|- ( ( F |` A ) : A -onto-> C -> ( F " A ) = C ) |
30 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
31 |
|
forn |
|- ( ( F |` B ) : B -onto-> D -> ran ( F |` B ) = D ) |
32 |
30 31
|
eqtrid |
|- ( ( F |` B ) : B -onto-> D -> ( F " B ) = D ) |
33 |
29 32
|
anim12i |
|- ( ( ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( ( F " A ) = C /\ ( F " B ) = D ) ) |
34 |
|
imadif |
|- ( Fun `' F -> ( F " ( A \ B ) ) = ( ( F " A ) \ ( F " B ) ) ) |
35 |
|
difeq12 |
|- ( ( ( F " A ) = C /\ ( F " B ) = D ) -> ( ( F " A ) \ ( F " B ) ) = ( C \ D ) ) |
36 |
34 35
|
sylan9eq |
|- ( ( Fun `' F /\ ( ( F " A ) = C /\ ( F " B ) = D ) ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
37 |
33 36
|
sylan2 |
|- ( ( Fun `' F /\ ( ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
38 |
37
|
3impb |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F " ( A \ B ) ) = ( C \ D ) ) |
39 |
38
|
f1oeq3d |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( F " ( A \ B ) ) <-> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) ) ) |
40 |
26 39
|
mpbid |
|- ( ( Fun `' F /\ ( F |` A ) : A -onto-> C /\ ( F |` B ) : B -onto-> D ) -> ( F |` ( A \ B ) ) : ( A \ B ) -1-1-onto-> ( C \ D ) ) |