| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res |  |-  ( A |` ( B \ C ) ) = ( A i^i ( ( B \ C ) X. _V ) ) | 
						
							| 2 |  | difxp1 |  |-  ( ( B \ C ) X. _V ) = ( ( B X. _V ) \ ( C X. _V ) ) | 
						
							| 3 | 2 | ineq2i |  |-  ( A i^i ( ( B \ C ) X. _V ) ) = ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) | 
						
							| 4 |  | indifdi |  |-  ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) | 
						
							| 5 | 1 3 4 | 3eqtri |  |-  ( A |` ( B \ C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) | 
						
							| 6 |  | df-res |  |-  ( A |` B ) = ( A i^i ( B X. _V ) ) | 
						
							| 7 |  | df-res |  |-  ( A |` C ) = ( A i^i ( C X. _V ) ) | 
						
							| 8 | 6 7 | difeq12i |  |-  ( ( A |` B ) \ ( A |` C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) | 
						
							| 9 | 5 8 | eqtr4i |  |-  ( A |` ( B \ C ) ) = ( ( A |` B ) \ ( A |` C ) ) |