Metamath Proof Explorer


Theorem resdifdir

Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024)

Ref Expression
Assertion resdifdir
|- ( ( A \ B ) |` C ) = ( ( A |` C ) \ ( B |` C ) )

Proof

Step Hyp Ref Expression
1 indifdir
 |-  ( ( A \ B ) i^i ( C X. _V ) ) = ( ( A i^i ( C X. _V ) ) \ ( B i^i ( C X. _V ) ) )
2 df-res
 |-  ( ( A \ B ) |` C ) = ( ( A \ B ) i^i ( C X. _V ) )
3 df-res
 |-  ( A |` C ) = ( A i^i ( C X. _V ) )
4 df-res
 |-  ( B |` C ) = ( B i^i ( C X. _V ) )
5 3 4 difeq12i
 |-  ( ( A |` C ) \ ( B |` C ) ) = ( ( A i^i ( C X. _V ) ) \ ( B i^i ( C X. _V ) ) )
6 1 2 5 3eqtr4i
 |-  ( ( A \ B ) |` C ) = ( ( A |` C ) \ ( B |` C ) )