| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resindm |
|- ( Rel R -> ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( _V \ { X } ) ) ) |
| 2 |
|
indif1 |
|- ( ( _V \ { X } ) i^i dom R ) = ( ( _V i^i dom R ) \ { X } ) |
| 3 |
|
incom |
|- ( _V i^i dom R ) = ( dom R i^i _V ) |
| 4 |
|
inv1 |
|- ( dom R i^i _V ) = dom R |
| 5 |
3 4
|
eqtri |
|- ( _V i^i dom R ) = dom R |
| 6 |
5
|
difeq1i |
|- ( ( _V i^i dom R ) \ { X } ) = ( dom R \ { X } ) |
| 7 |
2 6
|
eqtri |
|- ( ( _V \ { X } ) i^i dom R ) = ( dom R \ { X } ) |
| 8 |
7
|
reseq2i |
|- ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( dom R \ { X } ) ) |
| 9 |
1 8
|
eqtr3di |
|- ( Rel R -> ( R |` ( _V \ { X } ) ) = ( R |` ( dom R \ { X } ) ) ) |