Metamath Proof Explorer


Theorem resex

Description: The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis resex.1
|- A e. _V
Assertion resex
|- ( A |` B ) e. _V

Proof

Step Hyp Ref Expression
1 resex.1
 |-  A e. _V
2 resexg
 |-  ( A e. _V -> ( A |` B ) e. _V )
3 1 2 ax-mp
 |-  ( A |` B ) e. _V