Metamath Proof Explorer


Theorem resexd

Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis resexd.1
|- ( ph -> A e. V )
Assertion resexd
|- ( ph -> ( A |` B ) e. _V )

Proof

Step Hyp Ref Expression
1 resexd.1
 |-  ( ph -> A e. V )
2 resexg
 |-  ( A e. V -> ( A |` B ) e. _V )
3 1 2 syl
 |-  ( ph -> ( A |` B ) e. _V )