Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resexd.1 | |- ( ph -> A e. V ) |
|
Assertion | resexd | |- ( ph -> ( A |` B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexd.1 | |- ( ph -> A e. V ) |
|
2 | resexg | |- ( A e. V -> ( A |` B ) e. _V ) |
|
3 | 1 2 | syl | |- ( ph -> ( A |` B ) e. _V ) |