Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | resexg | |- ( A e. V -> ( A |` B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss | |- ( A |` B ) C_ A |
|
2 | ssexg | |- ( ( ( A |` B ) C_ A /\ A e. V ) -> ( A |` B ) e. _V ) |
|
3 | 1 2 | mpan | |- ( A e. V -> ( A |` B ) e. _V ) |