Step |
Hyp |
Ref |
Expression |
1 |
|
resf1st.f |
|- ( ph -> F e. V ) |
2 |
|
resf1st.h |
|- ( ph -> H e. W ) |
3 |
|
resf1st.s |
|- ( ph -> H Fn ( S X. S ) ) |
4 |
1 2
|
resfval |
|- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
5 |
4
|
fveq2d |
|- ( ph -> ( 1st ` ( F |`f H ) ) = ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
6 |
|
fvex |
|- ( 1st ` F ) e. _V |
7 |
6
|
resex |
|- ( ( 1st ` F ) |` dom dom H ) e. _V |
8 |
|
dmexg |
|- ( H e. W -> dom H e. _V ) |
9 |
|
mptexg |
|- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
10 |
2 8 9
|
3syl |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
11 |
|
op1stg |
|- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) ) |
12 |
7 10 11
|
sylancr |
|- ( ph -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) ) |
13 |
3
|
fndmd |
|- ( ph -> dom H = ( S X. S ) ) |
14 |
13
|
dmeqd |
|- ( ph -> dom dom H = dom ( S X. S ) ) |
15 |
|
dmxpid |
|- dom ( S X. S ) = S |
16 |
14 15
|
eqtrdi |
|- ( ph -> dom dom H = S ) |
17 |
16
|
reseq2d |
|- ( ph -> ( ( 1st ` F ) |` dom dom H ) = ( ( 1st ` F ) |` S ) ) |
18 |
5 12 17
|
3eqtrd |
|- ( ph -> ( 1st ` ( F |`f H ) ) = ( ( 1st ` F ) |` S ) ) |