| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resf1st.f | 
							 |-  ( ph -> F e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							resf1st.h | 
							 |-  ( ph -> H e. W )  | 
						
						
							| 3 | 
							
								
							 | 
							resf1st.s | 
							 |-  ( ph -> H Fn ( S X. S ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							resfval | 
							 |-  ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( ph -> ( 1st ` ( F |`f H ) ) = ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fvex | 
							 |-  ( 1st ` F ) e. _V  | 
						
						
							| 7 | 
							
								6
							 | 
							resex | 
							 |-  ( ( 1st ` F ) |` dom dom H ) e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							dmexg | 
							 |-  ( H e. W -> dom H e. _V )  | 
						
						
							| 9 | 
							
								
							 | 
							mptexg | 
							 |-  ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 10 | 
							
								2 8 9
							 | 
							3syl | 
							 |-  ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 11 | 
							
								
							 | 
							op1stg | 
							 |-  ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) )  | 
						
						
							| 12 | 
							
								7 10 11
							 | 
							sylancr | 
							 |-  ( ph -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) )  | 
						
						
							| 13 | 
							
								3
							 | 
							fndmd | 
							 |-  ( ph -> dom H = ( S X. S ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							dmeqd | 
							 |-  ( ph -> dom dom H = dom ( S X. S ) )  | 
						
						
							| 15 | 
							
								
							 | 
							dmxpid | 
							 |-  dom ( S X. S ) = S  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtrdi | 
							 |-  ( ph -> dom dom H = S )  | 
						
						
							| 17 | 
							
								16
							 | 
							reseq2d | 
							 |-  ( ph -> ( ( 1st ` F ) |` dom dom H ) = ( ( 1st ` F ) |` S ) )  | 
						
						
							| 18 | 
							
								5 12 17
							 | 
							3eqtrd | 
							 |-  ( ph -> ( 1st ` ( F |`f H ) ) = ( ( 1st ` F ) |` S ) )  |