Step |
Hyp |
Ref |
Expression |
1 |
|
resf1st.f |
|- ( ph -> F e. V ) |
2 |
|
resf1st.h |
|- ( ph -> H e. W ) |
3 |
|
resf1st.s |
|- ( ph -> H Fn ( S X. S ) ) |
4 |
|
resf2nd.x |
|- ( ph -> X e. S ) |
5 |
|
resf2nd.y |
|- ( ph -> Y e. S ) |
6 |
|
df-ov |
|- ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) |
7 |
1 2
|
resfval |
|- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
8 |
7
|
fveq2d |
|- ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
9 |
|
fvex |
|- ( 1st ` F ) e. _V |
10 |
9
|
resex |
|- ( ( 1st ` F ) |` dom dom H ) e. _V |
11 |
|
dmexg |
|- ( H e. W -> dom H e. _V ) |
12 |
|
mptexg |
|- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
13 |
2 11 12
|
3syl |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
14 |
|
op2ndg |
|- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
15 |
10 13 14
|
sylancr |
|- ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
16 |
8 15
|
eqtrd |
|- ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( ( 2nd ` F ) ` <. X , Y >. ) ) |
19 |
|
df-ov |
|- ( X ( 2nd ` F ) Y ) = ( ( 2nd ` F ) ` <. X , Y >. ) |
20 |
18 19
|
eqtr4di |
|- ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( X ( 2nd ` F ) Y ) ) |
21 |
17
|
fveq2d |
|- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
22 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
23 |
21 22
|
eqtr4di |
|- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) ) |
24 |
20 23
|
reseq12d |
|- ( ( ph /\ z = <. X , Y >. ) -> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |
25 |
4 5
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( S X. S ) ) |
26 |
3
|
fndmd |
|- ( ph -> dom H = ( S X. S ) ) |
27 |
25 26
|
eleqtrrd |
|- ( ph -> <. X , Y >. e. dom H ) |
28 |
|
ovex |
|- ( X ( 2nd ` F ) Y ) e. _V |
29 |
28
|
resex |
|- ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V |
30 |
29
|
a1i |
|- ( ph -> ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V ) |
31 |
16 24 27 30
|
fvmptd |
|- ( ph -> ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |
32 |
6 31
|
eqtrid |
|- ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |