| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resf1st.f | 
							 |-  ( ph -> F e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							resf1st.h | 
							 |-  ( ph -> H e. W )  | 
						
						
							| 3 | 
							
								
							 | 
							resf1st.s | 
							 |-  ( ph -> H Fn ( S X. S ) )  | 
						
						
							| 4 | 
							
								
							 | 
							resf2nd.x | 
							 |-  ( ph -> X e. S )  | 
						
						
							| 5 | 
							
								
							 | 
							resf2nd.y | 
							 |-  ( ph -> Y e. S )  | 
						
						
							| 6 | 
							
								
							 | 
							df-ov | 
							 |-  ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							resfval | 
							 |-  ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvex | 
							 |-  ( 1st ` F ) e. _V  | 
						
						
							| 10 | 
							
								9
							 | 
							resex | 
							 |-  ( ( 1st ` F ) |` dom dom H ) e. _V  | 
						
						
							| 11 | 
							
								
							 | 
							dmexg | 
							 |-  ( H e. W -> dom H e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							mptexg | 
							 |-  ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 13 | 
							
								2 11 12
							 | 
							3syl | 
							 |-  ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 14 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 15 | 
							
								10 13 14
							 | 
							sylancr | 
							 |-  ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							eqtrd | 
							 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. )  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( ( 2nd ` F ) ` <. X , Y >. ) )  | 
						
						
							| 19 | 
							
								
							 | 
							df-ov | 
							 |-  ( X ( 2nd ` F ) Y ) = ( ( 2nd ` F ) ` <. X , Y >. )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( X ( 2nd ` F ) Y ) )  | 
						
						
							| 21 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) )  | 
						
						
							| 22 | 
							
								
							 | 
							df-ov | 
							 |-  ( X H Y ) = ( H ` <. X , Y >. )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							reseq12d | 
							 |-  ( ( ph /\ z = <. X , Y >. ) -> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )  | 
						
						
							| 25 | 
							
								4 5
							 | 
							opelxpd | 
							 |-  ( ph -> <. X , Y >. e. ( S X. S ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							fndmd | 
							 |-  ( ph -> dom H = ( S X. S ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eleqtrrd | 
							 |-  ( ph -> <. X , Y >. e. dom H )  | 
						
						
							| 28 | 
							
								
							 | 
							ovex | 
							 |-  ( X ( 2nd ` F ) Y ) e. _V  | 
						
						
							| 29 | 
							
								28
							 | 
							resex | 
							 |-  ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							 |-  ( ph -> ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V )  | 
						
						
							| 31 | 
							
								16 24 27 30
							 | 
							fvmptd | 
							 |-  ( ph -> ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )  | 
						
						
							| 32 | 
							
								6 31
							 | 
							eqtrid | 
							 |-  ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) )  |