| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resfifsupp.f |
|- ( ph -> Fun F ) |
| 2 |
|
resfifsupp.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
resfifsupp.z |
|- ( ph -> Z e. V ) |
| 4 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 5 |
1 4
|
syl |
|- ( ph -> Rel F ) |
| 6 |
|
resindm |
|- ( Rel F -> ( F |` ( X i^i dom F ) ) = ( F |` X ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( F |` ( X i^i dom F ) ) = ( F |` X ) ) |
| 8 |
1
|
funfnd |
|- ( ph -> F Fn dom F ) |
| 9 |
|
fnresin2 |
|- ( F Fn dom F -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) ) |
| 11 |
|
infi |
|- ( X e. Fin -> ( X i^i dom F ) e. Fin ) |
| 12 |
2 11
|
syl |
|- ( ph -> ( X i^i dom F ) e. Fin ) |
| 13 |
10 12 3
|
fndmfifsupp |
|- ( ph -> ( F |` ( X i^i dom F ) ) finSupp Z ) |
| 14 |
7 13
|
eqbrtrrd |
|- ( ph -> ( F |` X ) finSupp Z ) |