| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrel |  |-  ( F Fn A -> Rel F ) | 
						
							| 2 | 1 | adantr |  |-  ( ( F Fn A /\ B e. Fin ) -> Rel F ) | 
						
							| 3 |  | resindm |  |-  ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( Rel F -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) | 
						
							| 6 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 7 | 6 | funfnd |  |-  ( F Fn A -> F Fn dom F ) | 
						
							| 8 |  | fnresin2 |  |-  ( F Fn dom F -> ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) ) | 
						
							| 9 |  | infi |  |-  ( B e. Fin -> ( B i^i dom F ) e. Fin ) | 
						
							| 10 |  | fnfi |  |-  ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ ( B i^i dom F ) e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) | 
						
							| 11 | 9 10 | sylan2 |  |-  ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) | 
						
							| 12 | 11 | ex |  |-  ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) | 
						
							| 13 | 7 8 12 | 3syl |  |-  ( F Fn A -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( F Fn A /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) | 
						
							| 15 | 5 14 | eqeltrd |  |-  ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) e. Fin ) |