Step |
Hyp |
Ref |
Expression |
1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
2 |
1
|
adantr |
|- ( ( F Fn A /\ B e. Fin ) -> Rel F ) |
3 |
|
resindm |
|- ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
4 |
3
|
eqcomd |
|- ( Rel F -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
5 |
2 4
|
syl |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
6 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
7 |
6
|
funfnd |
|- ( F Fn A -> F Fn dom F ) |
8 |
|
fnresin2 |
|- ( F Fn dom F -> ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) ) |
9 |
|
infi |
|- ( B e. Fin -> ( B i^i dom F ) e. Fin ) |
10 |
|
fnfi |
|- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ ( B i^i dom F ) e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
11 |
9 10
|
sylan2 |
|- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
12 |
11
|
ex |
|- ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
13 |
7 8 12
|
3syl |
|- ( F Fn A -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
14 |
13
|
imp |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
15 |
5 14
|
eqeltrd |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) e. Fin ) |