Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfsupp.b | |- ( ph -> ( dom F \ B ) e. Fin ) | |
| resfsupp.e | |- ( ph -> F e. W ) | ||
| resfsupp.f | |- ( ph -> Fun F ) | ||
| resfsupp.g | |- ( ph -> G = ( F |` B ) ) | ||
| resfsupp.s | |- ( ph -> G finSupp Z ) | ||
| resfsupp.z | |- ( ph -> Z e. V ) | ||
| Assertion | resfsupp | |- ( ph -> F finSupp Z ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resfsupp.b | |- ( ph -> ( dom F \ B ) e. Fin ) | |
| 2 | resfsupp.e | |- ( ph -> F e. W ) | |
| 3 | resfsupp.f | |- ( ph -> Fun F ) | |
| 4 | resfsupp.g | |- ( ph -> G = ( F |` B ) ) | |
| 5 | resfsupp.s | |- ( ph -> G finSupp Z ) | |
| 6 | resfsupp.z | |- ( ph -> Z e. V ) | |
| 7 | 5 | fsuppimpd | |- ( ph -> ( G supp Z ) e. Fin ) | 
| 8 | 1 2 4 7 6 | ressuppfi | |- ( ph -> ( F supp Z ) e. Fin ) | 
| 9 | funisfsupp | |- ( ( Fun F /\ F e. W /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | |
| 10 | 3 2 6 9 | syl3anc | |- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | 
| 11 | 8 10 | mpbird | |- ( ph -> F finSupp Z ) |