Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
|- ( Fun A -> Fun ( A |` B ) ) |
2 |
1
|
adantr |
|- ( ( Fun A /\ B e. C ) -> Fun ( A |` B ) ) |
3 |
2
|
funfnd |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) Fn dom ( A |` B ) ) |
4 |
|
dffn5 |
|- ( ( A |` B ) Fn dom ( A |` B ) <-> ( A |` B ) = ( x e. dom ( A |` B ) |-> ( ( A |` B ) ` x ) ) ) |
5 |
3 4
|
sylib |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) = ( x e. dom ( A |` B ) |-> ( ( A |` B ) ` x ) ) ) |
6 |
|
fvex |
|- ( ( A |` B ) ` x ) e. _V |
7 |
6
|
fnasrn |
|- ( x e. dom ( A |` B ) |-> ( ( A |` B ) ` x ) ) = ran ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) |
8 |
5 7
|
eqtrdi |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) = ran ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) ) |
9 |
|
opex |
|- <. x , ( ( A |` B ) ` x ) >. e. _V |
10 |
|
eqid |
|- ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) = ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) |
11 |
9 10
|
dmmpti |
|- dom ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) = dom ( A |` B ) |
12 |
11
|
imaeq2i |
|- ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) ) = ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( A |` B ) ) |
13 |
|
imadmrn |
|- ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) ) = ran ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) |
14 |
12 13
|
eqtr3i |
|- ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( A |` B ) ) = ran ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) |
15 |
8 14
|
eqtr4di |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) = ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( A |` B ) ) ) |
16 |
|
funmpt |
|- Fun ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) |
17 |
|
dmresexg |
|- ( B e. C -> dom ( A |` B ) e. _V ) |
18 |
17
|
adantl |
|- ( ( Fun A /\ B e. C ) -> dom ( A |` B ) e. _V ) |
19 |
|
funimaexg |
|- ( ( Fun ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) /\ dom ( A |` B ) e. _V ) -> ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( A |` B ) ) e. _V ) |
20 |
16 18 19
|
sylancr |
|- ( ( Fun A /\ B e. C ) -> ( ( x e. dom ( A |` B ) |-> <. x , ( ( A |` B ) ` x ) >. ) " dom ( A |` B ) ) e. _V ) |
21 |
15 20
|
eqeltrd |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) e. _V ) |