| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmresexg |
|- ( B e. C -> dom ( A |` B ) e. _V ) |
| 2 |
1
|
adantl |
|- ( ( Fun A /\ B e. C ) -> dom ( A |` B ) e. _V ) |
| 3 |
|
df-ima |
|- ( A " B ) = ran ( A |` B ) |
| 4 |
|
funimaexg |
|- ( ( Fun A /\ B e. C ) -> ( A " B ) e. _V ) |
| 5 |
3 4
|
eqeltrrid |
|- ( ( Fun A /\ B e. C ) -> ran ( A |` B ) e. _V ) |
| 6 |
2 5
|
jca |
|- ( ( Fun A /\ B e. C ) -> ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) ) |
| 7 |
|
xpexg |
|- ( ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) -> ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) |
| 8 |
|
relres |
|- Rel ( A |` B ) |
| 9 |
|
relssdmrn |
|- ( Rel ( A |` B ) -> ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) |
| 11 |
|
ssexg |
|- ( ( ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) /\ ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) -> ( A |` B ) e. _V ) |
| 12 |
10 11
|
mpan |
|- ( ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V -> ( A |` B ) e. _V ) |
| 13 |
6 7 12
|
3syl |
|- ( ( Fun A /\ B e. C ) -> ( A |` B ) e. _V ) |