Step |
Hyp |
Ref |
Expression |
1 |
|
resfval.c |
|- ( ph -> F e. V ) |
2 |
|
resfval.d |
|- ( ph -> H e. W ) |
3 |
|
resfval2.g |
|- ( ph -> G e. X ) |
4 |
|
resfval2.d |
|- ( ph -> H Fn ( S X. S ) ) |
5 |
|
opex |
|- <. F , G >. e. _V |
6 |
5
|
a1i |
|- ( ph -> <. F , G >. e. _V ) |
7 |
6 2
|
resfval |
|- ( ph -> ( <. F , G >. |`f H ) = <. ( ( 1st ` <. F , G >. ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) >. ) |
8 |
|
op1stg |
|- ( ( F e. V /\ G e. X ) -> ( 1st ` <. F , G >. ) = F ) |
9 |
1 3 8
|
syl2anc |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
10 |
4
|
fndmd |
|- ( ph -> dom H = ( S X. S ) ) |
11 |
10
|
dmeqd |
|- ( ph -> dom dom H = dom ( S X. S ) ) |
12 |
|
dmxpid |
|- dom ( S X. S ) = S |
13 |
11 12
|
eqtrdi |
|- ( ph -> dom dom H = S ) |
14 |
9 13
|
reseq12d |
|- ( ph -> ( ( 1st ` <. F , G >. ) |` dom dom H ) = ( F |` S ) ) |
15 |
|
op2ndg |
|- ( ( F e. V /\ G e. X ) -> ( 2nd ` <. F , G >. ) = G ) |
16 |
1 3 15
|
syl2anc |
|- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
17 |
16
|
fveq1d |
|- ( ph -> ( ( 2nd ` <. F , G >. ) ` z ) = ( G ` z ) ) |
18 |
17
|
reseq1d |
|- ( ph -> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) = ( ( G ` z ) |` ( H ` z ) ) ) |
19 |
10 18
|
mpteq12dv |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) = ( z e. ( S X. S ) |-> ( ( G ` z ) |` ( H ` z ) ) ) ) |
20 |
|
fveq2 |
|- ( z = <. x , y >. -> ( G ` z ) = ( G ` <. x , y >. ) ) |
21 |
|
df-ov |
|- ( x G y ) = ( G ` <. x , y >. ) |
22 |
20 21
|
eqtr4di |
|- ( z = <. x , y >. -> ( G ` z ) = ( x G y ) ) |
23 |
|
fveq2 |
|- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
24 |
|
df-ov |
|- ( x H y ) = ( H ` <. x , y >. ) |
25 |
23 24
|
eqtr4di |
|- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
26 |
22 25
|
reseq12d |
|- ( z = <. x , y >. -> ( ( G ` z ) |` ( H ` z ) ) = ( ( x G y ) |` ( x H y ) ) ) |
27 |
26
|
mpompt |
|- ( z e. ( S X. S ) |-> ( ( G ` z ) |` ( H ` z ) ) ) = ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) |
28 |
19 27
|
eqtrdi |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) = ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) ) |
29 |
14 28
|
opeq12d |
|- ( ph -> <. ( ( 1st ` <. F , G >. ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) >. = <. ( F |` S ) , ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) >. ) |
30 |
7 29
|
eqtrd |
|- ( ph -> ( <. F , G >. |`f H ) = <. ( F |` S ) , ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) >. ) |