Step |
Hyp |
Ref |
Expression |
1 |
|
resfvresima.f |
|- ( ph -> Fun F ) |
2 |
|
resfvresima.s |
|- ( ph -> S C_ dom F ) |
3 |
|
resfvresima.x |
|- ( ph -> X e. S ) |
4 |
3
|
fvresd |
|- ( ph -> ( ( F |` S ) ` X ) = ( F ` X ) ) |
5 |
4
|
fveq2d |
|- ( ph -> ( ( H |` ( F " S ) ) ` ( ( F |` S ) ` X ) ) = ( ( H |` ( F " S ) ) ` ( F ` X ) ) ) |
6 |
1 2
|
jca |
|- ( ph -> ( Fun F /\ S C_ dom F ) ) |
7 |
|
funfvima2 |
|- ( ( Fun F /\ S C_ dom F ) -> ( X e. S -> ( F ` X ) e. ( F " S ) ) ) |
8 |
6 3 7
|
sylc |
|- ( ph -> ( F ` X ) e. ( F " S ) ) |
9 |
8
|
fvresd |
|- ( ph -> ( ( H |` ( F " S ) ) ` ( F ` X ) ) = ( H ` ( F ` X ) ) ) |
10 |
5 9
|
eqtrd |
|- ( ph -> ( ( H |` ( F " S ) ) ` ( ( F |` S ) ` X ) ) = ( H ` ( F ` X ) ) ) |