Step |
Hyp |
Ref |
Expression |
1 |
|
resghm.u |
|- U = ( S |`s X ) |
2 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
3 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
4 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
5 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
6 |
1
|
subggrp |
|- ( X e. ( SubGrp ` S ) -> U e. Grp ) |
7 |
6
|
adantl |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> U e. Grp ) |
8 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
9 |
8
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> T e. Grp ) |
10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
11 |
10 3
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
12 |
10
|
subgss |
|- ( X e. ( SubGrp ` S ) -> X C_ ( Base ` S ) ) |
13 |
|
fssres |
|- ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
14 |
11 12 13
|
syl2an |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
15 |
12
|
adantl |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> X C_ ( Base ` S ) ) |
16 |
1 10
|
ressbas2 |
|- ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) |
17 |
15 16
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> X = ( Base ` U ) ) |
18 |
17
|
feq2d |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) |
19 |
14 18
|
mpbid |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) |
20 |
|
eleq2 |
|- ( X = ( Base ` U ) -> ( a e. X <-> a e. ( Base ` U ) ) ) |
21 |
|
eleq2 |
|- ( X = ( Base ` U ) -> ( b e. X <-> b e. ( Base ` U ) ) ) |
22 |
20 21
|
anbi12d |
|- ( X = ( Base ` U ) -> ( ( a e. X /\ b e. X ) <-> ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) ) |
23 |
17 22
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( ( a e. X /\ b e. X ) <-> ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) ) |
24 |
23
|
biimpar |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) -> ( a e. X /\ b e. X ) ) |
25 |
|
simpll |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> F e. ( S GrpHom T ) ) |
26 |
15
|
sselda |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ a e. X ) -> a e. ( Base ` S ) ) |
27 |
26
|
adantrr |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> a e. ( Base ` S ) ) |
28 |
15
|
sselda |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ b e. X ) -> b e. ( Base ` S ) ) |
29 |
28
|
adantrl |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> b e. ( Base ` S ) ) |
30 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
31 |
10 30 5
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
32 |
25 27 29 31
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
33 |
1 30
|
ressplusg |
|- ( X e. ( SubGrp ` S ) -> ( +g ` S ) = ( +g ` U ) ) |
34 |
33
|
ad2antlr |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( +g ` S ) = ( +g ` U ) ) |
35 |
34
|
oveqd |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) = ( a ( +g ` U ) b ) ) |
36 |
35
|
fveq2d |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` S ) b ) ) = ( ( F |` X ) ` ( a ( +g ` U ) b ) ) ) |
37 |
30
|
subgcl |
|- ( ( X e. ( SubGrp ` S ) /\ a e. X /\ b e. X ) -> ( a ( +g ` S ) b ) e. X ) |
38 |
37
|
3expb |
|- ( ( X e. ( SubGrp ` S ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) e. X ) |
39 |
38
|
adantll |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) e. X ) |
40 |
39
|
fvresd |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` S ) b ) ) = ( F ` ( a ( +g ` S ) b ) ) ) |
41 |
36 40
|
eqtr3d |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( F ` ( a ( +g ` S ) b ) ) ) |
42 |
|
fvres |
|- ( a e. X -> ( ( F |` X ) ` a ) = ( F ` a ) ) |
43 |
|
fvres |
|- ( b e. X -> ( ( F |` X ) ` b ) = ( F ` b ) ) |
44 |
42 43
|
oveqan12d |
|- ( ( a e. X /\ b e. X ) -> ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
45 |
44
|
adantl |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
46 |
32 41 45
|
3eqtr4d |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) ) |
47 |
24 46
|
syldan |
|- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) ) |
48 |
2 3 4 5 7 9 19 47
|
isghmd |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |