| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resghm2.u |  |-  U = ( T |`s X ) | 
						
							| 2 |  | ghmmhm |  |-  ( F e. ( S GrpHom U ) -> F e. ( S MndHom U ) ) | 
						
							| 3 |  | subgsubm |  |-  ( X e. ( SubGrp ` T ) -> X e. ( SubMnd ` T ) ) | 
						
							| 4 | 1 | resmhm2 |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S MndHom T ) ) | 
						
							| 6 |  | ghmgrp1 |  |-  ( F e. ( S GrpHom U ) -> S e. Grp ) | 
						
							| 7 |  | subgrcl |  |-  ( X e. ( SubGrp ` T ) -> T e. Grp ) | 
						
							| 8 |  | ghmmhmb |  |-  ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> ( S GrpHom T ) = ( S MndHom T ) ) | 
						
							| 10 | 5 9 | eleqtrrd |  |-  ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S GrpHom T ) ) |