Step |
Hyp |
Ref |
Expression |
1 |
|
resghm2.u |
|- U = ( T |`s X ) |
2 |
|
ghmmhm |
|- ( F e. ( S GrpHom U ) -> F e. ( S MndHom U ) ) |
3 |
|
subgsubm |
|- ( X e. ( SubGrp ` T ) -> X e. ( SubMnd ` T ) ) |
4 |
1
|
resmhm2 |
|- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |
5 |
2 3 4
|
syl2an |
|- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S MndHom T ) ) |
6 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom U ) -> S e. Grp ) |
7 |
|
subgrcl |
|- ( X e. ( SubGrp ` T ) -> T e. Grp ) |
8 |
|
ghmmhmb |
|- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
10 |
5 9
|
eleqtrrd |
|- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S GrpHom T ) ) |