Step |
Hyp |
Ref |
Expression |
1 |
|
resghm2.u |
|- U = ( T |`s X ) |
2 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
3 |
2
|
a1i |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) -> S e. Grp ) ) |
4 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom U ) -> S e. Grp ) |
5 |
4
|
a1i |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom U ) -> S e. Grp ) ) |
6 |
|
subgsubm |
|- ( X e. ( SubGrp ` T ) -> X e. ( SubMnd ` T ) ) |
7 |
1
|
resmhm2b |
|- ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
8 |
6 7
|
sylan |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
9 |
8
|
adantl |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
10 |
|
subgrcl |
|- ( X e. ( SubGrp ` T ) -> T e. Grp ) |
11 |
10
|
adantr |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> T e. Grp ) |
12 |
|
ghmmhmb |
|- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
13 |
11 12
|
sylan2 |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
14 |
13
|
eleq2d |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom T ) <-> F e. ( S MndHom T ) ) ) |
15 |
1
|
subggrp |
|- ( X e. ( SubGrp ` T ) -> U e. Grp ) |
16 |
15
|
adantr |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> U e. Grp ) |
17 |
|
ghmmhmb |
|- ( ( S e. Grp /\ U e. Grp ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
18 |
16 17
|
sylan2 |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
19 |
18
|
eleq2d |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom U ) <-> F e. ( S MndHom U ) ) ) |
20 |
9 14 19
|
3bitr4d |
|- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
21 |
20
|
expcom |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( S e. Grp -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) ) |
22 |
3 5 21
|
pm5.21ndd |
|- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |