Step |
Hyp |
Ref |
Expression |
1 |
|
resgrpplusfrn.b |
|- B = ( Base ` G ) |
2 |
|
resgrpplusfrn.h |
|- H = ( G |`s S ) |
3 |
|
resgrpplusfrn.o |
|- F = ( +f ` H ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
4 3
|
grpplusfo |
|- ( H e. Grp -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) |
6 |
5
|
adantr |
|- ( ( H e. Grp /\ S C_ B ) -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) |
7 |
|
eqidd |
|- ( ( H e. Grp /\ S C_ B ) -> F = F ) |
8 |
2 1
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` H ) ) |
9 |
8
|
adantl |
|- ( ( H e. Grp /\ S C_ B ) -> S = ( Base ` H ) ) |
10 |
9
|
sqxpeqd |
|- ( ( H e. Grp /\ S C_ B ) -> ( S X. S ) = ( ( Base ` H ) X. ( Base ` H ) ) ) |
11 |
7 10 9
|
foeq123d |
|- ( ( H e. Grp /\ S C_ B ) -> ( F : ( S X. S ) -onto-> S <-> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) ) |
12 |
6 11
|
mpbird |
|- ( ( H e. Grp /\ S C_ B ) -> F : ( S X. S ) -onto-> S ) |
13 |
|
forn |
|- ( F : ( S X. S ) -onto-> S -> ran F = S ) |
14 |
13
|
eqcomd |
|- ( F : ( S X. S ) -onto-> S -> S = ran F ) |
15 |
12 14
|
syl |
|- ( ( H e. Grp /\ S C_ B ) -> S = ran F ) |