Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | residm | |- ( ( A |` B ) |` B ) = ( A |` B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- B C_ B |
|
| 2 | resabs2 | |- ( B C_ B -> ( ( A |` B ) |` B ) = ( A |` B ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( A |` B ) |` B ) = ( A |` B ) |