Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | residm | |- ( ( A |` B ) |` B ) = ( A |` B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |- B C_ B |
|
2 | resabs2 | |- ( B C_ B -> ( ( A |` B ) |` B ) = ( A |` B ) ) |
|
3 | 1 2 | ax-mp | |- ( ( A |` B ) |` B ) = ( A |` B ) |