Step |
Hyp |
Ref |
Expression |
1 |
|
sseqin2 |
|- ( B C_ C <-> ( C i^i B ) = B ) |
2 |
|
reseq2 |
|- ( ( C i^i B ) = B -> ( A |` ( C i^i B ) ) = ( A |` B ) ) |
3 |
1 2
|
sylbi |
|- ( B C_ C -> ( A |` ( C i^i B ) ) = ( A |` B ) ) |
4 |
3
|
rneqd |
|- ( B C_ C -> ran ( A |` ( C i^i B ) ) = ran ( A |` B ) ) |
5 |
|
df-ima |
|- ( ( A |` C ) " B ) = ran ( ( A |` C ) |` B ) |
6 |
|
resres |
|- ( ( A |` C ) |` B ) = ( A |` ( C i^i B ) ) |
7 |
6
|
rneqi |
|- ran ( ( A |` C ) |` B ) = ran ( A |` ( C i^i B ) ) |
8 |
5 7
|
eqtri |
|- ( ( A |` C ) " B ) = ran ( A |` ( C i^i B ) ) |
9 |
|
df-ima |
|- ( A " B ) = ran ( A |` B ) |
10 |
4 8 9
|
3eqtr4g |
|- ( B C_ C -> ( ( A |` C ) " B ) = ( A " B ) ) |