| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efi4p.1 |
|- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
| 2 |
|
resinval |
|- ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) ) |
| 3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 4 |
1
|
efi4p |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 5 |
3 4
|
syl |
|- ( A e. RR -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 6 |
5
|
fveq2d |
|- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( Im ` ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 7 |
|
1re |
|- 1 e. RR |
| 8 |
|
resqcl |
|- ( A e. RR -> ( A ^ 2 ) e. RR ) |
| 9 |
8
|
rehalfcld |
|- ( A e. RR -> ( ( A ^ 2 ) / 2 ) e. RR ) |
| 10 |
|
resubcl |
|- ( ( 1 e. RR /\ ( ( A ^ 2 ) / 2 ) e. RR ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 11 |
7 9 10
|
sylancr |
|- ( A e. RR -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 12 |
11
|
recnd |
|- ( A e. RR -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. CC ) |
| 13 |
|
ax-icn |
|- _i e. CC |
| 14 |
|
3nn0 |
|- 3 e. NN0 |
| 15 |
|
reexpcl |
|- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
| 16 |
14 15
|
mpan2 |
|- ( A e. RR -> ( A ^ 3 ) e. RR ) |
| 17 |
|
6re |
|- 6 e. RR |
| 18 |
|
6pos |
|- 0 < 6 |
| 19 |
17 18
|
gt0ne0ii |
|- 6 =/= 0 |
| 20 |
|
redivcl |
|- ( ( ( A ^ 3 ) e. RR /\ 6 e. RR /\ 6 =/= 0 ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 21 |
17 19 20
|
mp3an23 |
|- ( ( A ^ 3 ) e. RR -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 22 |
16 21
|
syl |
|- ( A e. RR -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 23 |
|
resubcl |
|- ( ( A e. RR /\ ( ( A ^ 3 ) / 6 ) e. RR ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
| 24 |
22 23
|
mpdan |
|- ( A e. RR -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
| 25 |
24
|
recnd |
|- ( A e. RR -> ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) |
| 26 |
|
mulcl |
|- ( ( _i e. CC /\ ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) -> ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) e. CC ) |
| 27 |
13 25 26
|
sylancr |
|- ( A e. RR -> ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) e. CC ) |
| 28 |
12 27
|
addcld |
|- ( A e. RR -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) e. CC ) |
| 29 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 30 |
13 3 29
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
| 31 |
|
4nn0 |
|- 4 e. NN0 |
| 32 |
1
|
eftlcl |
|- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 33 |
30 31 32
|
sylancl |
|- ( A e. RR -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 34 |
28 33
|
imaddd |
|- ( A e. RR -> ( Im ` ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) = ( ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 35 |
11 24
|
crimd |
|- ( A e. RR -> ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
| 36 |
35
|
oveq1d |
|- ( A e. RR -> ( ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 37 |
6 34 36
|
3eqtrd |
|- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 38 |
2 37
|
eqtrd |
|- ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |