Metamath Proof Explorer


Theorem resincld

Description: Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis resincld.1
|- ( ph -> A e. RR )
Assertion resincld
|- ( ph -> ( sin ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 resincld.1
 |-  ( ph -> A e. RR )
2 resincl
 |-  ( A e. RR -> ( sin ` A ) e. RR )
3 1 2 syl
 |-  ( ph -> ( sin ` A ) e. RR )