| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinf |  |-  sin : CC --> CC | 
						
							| 2 |  | ffn |  |-  ( sin : CC --> CC -> sin Fn CC ) | 
						
							| 3 | 1 2 | ax-mp |  |-  sin Fn CC | 
						
							| 4 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 5 |  | fnssres |  |-  ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` RR ) Fn RR ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( sin |` RR ) Fn RR | 
						
							| 7 |  | fvres |  |-  ( x e. RR -> ( ( sin |` RR ) ` x ) = ( sin ` x ) ) | 
						
							| 8 |  | resincl |  |-  ( x e. RR -> ( sin ` x ) e. RR ) | 
						
							| 9 | 7 8 | eqeltrd |  |-  ( x e. RR -> ( ( sin |` RR ) ` x ) e. RR ) | 
						
							| 10 | 9 | rgen |  |-  A. x e. RR ( ( sin |` RR ) ` x ) e. RR | 
						
							| 11 |  | ffnfv |  |-  ( ( sin |` RR ) : RR --> RR <-> ( ( sin |` RR ) Fn RR /\ A. x e. RR ( ( sin |` RR ) ` x ) e. RR ) ) | 
						
							| 12 | 6 10 11 | mpbir2an |  |-  ( sin |` RR ) : RR --> RR | 
						
							| 13 |  | sincn |  |-  sin e. ( CC -cn-> CC ) | 
						
							| 14 |  | rescncf |  |-  ( RR C_ CC -> ( sin e. ( CC -cn-> CC ) -> ( sin |` RR ) e. ( RR -cn-> CC ) ) ) | 
						
							| 15 | 4 13 14 | mp2 |  |-  ( sin |` RR ) e. ( RR -cn-> CC ) | 
						
							| 16 |  | cncfcdm |  |-  ( ( RR C_ CC /\ ( sin |` RR ) e. ( RR -cn-> CC ) ) -> ( ( sin |` RR ) e. ( RR -cn-> RR ) <-> ( sin |` RR ) : RR --> RR ) ) | 
						
							| 17 | 4 15 16 | mp2an |  |-  ( ( sin |` RR ) e. ( RR -cn-> RR ) <-> ( sin |` RR ) : RR --> RR ) | 
						
							| 18 | 12 17 | mpbir |  |-  ( sin |` RR ) e. ( RR -cn-> RR ) |