| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpindir |
|- ( ( B i^i C ) X. _V ) = ( ( B X. _V ) i^i ( C X. _V ) ) |
| 2 |
1
|
ineq2i |
|- ( A i^i ( ( B i^i C ) X. _V ) ) = ( A i^i ( ( B X. _V ) i^i ( C X. _V ) ) ) |
| 3 |
|
inindi |
|- ( A i^i ( ( B X. _V ) i^i ( C X. _V ) ) ) = ( ( A i^i ( B X. _V ) ) i^i ( A i^i ( C X. _V ) ) ) |
| 4 |
2 3
|
eqtri |
|- ( A i^i ( ( B i^i C ) X. _V ) ) = ( ( A i^i ( B X. _V ) ) i^i ( A i^i ( C X. _V ) ) ) |
| 5 |
|
df-res |
|- ( A |` ( B i^i C ) ) = ( A i^i ( ( B i^i C ) X. _V ) ) |
| 6 |
|
df-res |
|- ( A |` B ) = ( A i^i ( B X. _V ) ) |
| 7 |
|
df-res |
|- ( A |` C ) = ( A i^i ( C X. _V ) ) |
| 8 |
6 7
|
ineq12i |
|- ( ( A |` B ) i^i ( A |` C ) ) = ( ( A i^i ( B X. _V ) ) i^i ( A i^i ( C X. _V ) ) ) |
| 9 |
4 5 8
|
3eqtr4i |
|- ( A |` ( B i^i C ) ) = ( ( A |` B ) i^i ( A |` C ) ) |