| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resdm |  |-  ( Rel A -> ( A |` dom A ) = A ) | 
						
							| 2 | 1 | ineq2d |  |-  ( Rel A -> ( ( A |` B ) i^i ( A |` dom A ) ) = ( ( A |` B ) i^i A ) ) | 
						
							| 3 |  | resindi |  |-  ( A |` ( B i^i dom A ) ) = ( ( A |` B ) i^i ( A |` dom A ) ) | 
						
							| 4 |  | incom |  |-  ( ( A |` B ) i^i A ) = ( A i^i ( A |` B ) ) | 
						
							| 5 |  | inres |  |-  ( A i^i ( A |` B ) ) = ( ( A i^i A ) |` B ) | 
						
							| 6 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 7 | 6 | reseq1i |  |-  ( ( A i^i A ) |` B ) = ( A |` B ) | 
						
							| 8 | 4 5 7 | 3eqtrri |  |-  ( A |` B ) = ( ( A |` B ) i^i A ) | 
						
							| 9 | 2 3 8 | 3eqtr4g |  |-  ( Rel A -> ( A |` ( B i^i dom A ) ) = ( A |` B ) ) |