| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | sinhval |  |-  ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 4 |  | reefcl |  |-  ( A e. RR -> ( exp ` A ) e. RR ) | 
						
							| 5 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 6 | 5 | reefcld |  |-  ( A e. RR -> ( exp ` -u A ) e. RR ) | 
						
							| 7 | 4 6 | resubcld |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) | 
						
							| 8 | 7 | rehalfcld |  |-  ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) e. RR ) | 
						
							| 9 | 3 8 | eqeltrd |  |-  ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |