Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
cjmul |
|- ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
4 |
1 2 3
|
sylancr |
|- ( A e. RR -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
5 |
|
cji |
|- ( * ` _i ) = -u _i |
6 |
5
|
oveq1i |
|- ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) |
7 |
|
cjre |
|- ( A e. RR -> ( * ` A ) = A ) |
8 |
7
|
oveq2d |
|- ( A e. RR -> ( -u _i x. ( * ` A ) ) = ( -u _i x. A ) ) |
9 |
6 8
|
eqtrid |
|- ( A e. RR -> ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. A ) ) |
10 |
4 9
|
eqtrd |
|- ( A e. RR -> ( * ` ( _i x. A ) ) = ( -u _i x. A ) ) |
11 |
10
|
fveq2d |
|- ( A e. RR -> ( exp ` ( * ` ( _i x. A ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
12 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
13 |
1 2 12
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
14 |
|
efcj |
|- ( ( _i x. A ) e. CC -> ( exp ` ( * ` ( _i x. A ) ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
15 |
13 14
|
syl |
|- ( A e. RR -> ( exp ` ( * ` ( _i x. A ) ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
16 |
11 15
|
eqtr3d |
|- ( A e. RR -> ( exp ` ( -u _i x. A ) ) = ( * ` ( exp ` ( _i x. A ) ) ) ) |
17 |
16
|
oveq2d |
|- ( A e. RR -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) ) |
18 |
17
|
oveq1d |
|- ( A e. RR -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
19 |
|
sinval |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
20 |
2 19
|
syl |
|- ( A e. RR -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
21 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
22 |
|
imval2 |
|- ( ( exp ` ( _i x. A ) ) e. CC -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
23 |
13 21 22
|
3syl |
|- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( * ` ( exp ` ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
24 |
18 20 23
|
3eqtr4d |
|- ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) ) |