| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resipos.k |
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
| 2 |
|
prex |
|- { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. _V |
| 3 |
1 2
|
eqeltri |
|- K e. _V |
| 4 |
3
|
a1i |
|- ( B e. V -> K e. _V ) |
| 5 |
1
|
resiposbas |
|- ( B e. V -> B = ( Base ` K ) ) |
| 6 |
|
resiexg |
|- ( B e. V -> ( _I |` B ) e. _V ) |
| 7 |
|
basendxltplendx |
|- ( Base ` ndx ) < ( le ` ndx ) |
| 8 |
|
plendxnn |
|- ( le ` ndx ) e. NN |
| 9 |
|
pleid |
|- le = Slot ( le ` ndx ) |
| 10 |
1 7 8 9
|
2strop |
|- ( ( _I |` B ) e. _V -> ( _I |` B ) = ( le ` K ) ) |
| 11 |
6 10
|
syl |
|- ( B e. V -> ( _I |` B ) = ( le ` K ) ) |
| 12 |
|
equid |
|- x = x |
| 13 |
|
resieq |
|- ( ( x e. B /\ x e. B ) -> ( x ( _I |` B ) x <-> x = x ) ) |
| 14 |
13
|
anidms |
|- ( x e. B -> ( x ( _I |` B ) x <-> x = x ) ) |
| 15 |
12 14
|
mpbiri |
|- ( x e. B -> x ( _I |` B ) x ) |
| 16 |
15
|
adantl |
|- ( ( B e. V /\ x e. B ) -> x ( _I |` B ) x ) |
| 17 |
|
resieq |
|- ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y <-> x = y ) ) |
| 18 |
17
|
biimpd |
|- ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y -> x = y ) ) |
| 19 |
18
|
adantrd |
|- ( ( x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) |
| 20 |
19
|
3adant1 |
|- ( ( B e. V /\ x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) |
| 21 |
|
eqtr |
|- ( ( x = y /\ y = z ) -> x = z ) |
| 22 |
21
|
a1i |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x = y /\ y = z ) -> x = z ) ) |
| 23 |
|
simpr1 |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) |
| 24 |
|
simpr2 |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) |
| 25 |
23 24 17
|
syl2anc |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) y <-> x = y ) ) |
| 26 |
|
simpr3 |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) |
| 27 |
|
resieq |
|- ( ( y e. B /\ z e. B ) -> ( y ( _I |` B ) z <-> y = z ) ) |
| 28 |
24 26 27
|
syl2anc |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y ( _I |` B ) z <-> y = z ) ) |
| 29 |
25 28
|
anbi12d |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) <-> ( x = y /\ y = z ) ) ) |
| 30 |
|
resieq |
|- ( ( x e. B /\ z e. B ) -> ( x ( _I |` B ) z <-> x = z ) ) |
| 31 |
23 26 30
|
syl2anc |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) z <-> x = z ) ) |
| 32 |
22 29 31
|
3imtr4d |
|- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) -> x ( _I |` B ) z ) ) |
| 33 |
4 5 11 16 20 32
|
isposd |
|- ( B e. V -> K e. Poset ) |