Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015) (Proof shortened by JJ, 25-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resiun1 | |- ( U_ x e. A B |` C ) = U_ x e. A ( B |` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin1 | |- U_ x e. A ( B i^i ( C X. _V ) ) = ( U_ x e. A B i^i ( C X. _V ) ) |
|
| 2 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
| 3 | 2 | a1i | |- ( x e. A -> ( B |` C ) = ( B i^i ( C X. _V ) ) ) |
| 4 | 3 | iuneq2i | |- U_ x e. A ( B |` C ) = U_ x e. A ( B i^i ( C X. _V ) ) |
| 5 | df-res | |- ( U_ x e. A B |` C ) = ( U_ x e. A B i^i ( C X. _V ) ) |
|
| 6 | 1 4 5 | 3eqtr4ri | |- ( U_ x e. A B |` C ) = U_ x e. A ( B |` C ) |