| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res |  |-  ( C |` U_ x e. A B ) = ( C i^i ( U_ x e. A B X. _V ) ) | 
						
							| 2 |  | df-res |  |-  ( C |` B ) = ( C i^i ( B X. _V ) ) | 
						
							| 3 | 2 | a1i |  |-  ( x e. A -> ( C |` B ) = ( C i^i ( B X. _V ) ) ) | 
						
							| 4 | 3 | iuneq2i |  |-  U_ x e. A ( C |` B ) = U_ x e. A ( C i^i ( B X. _V ) ) | 
						
							| 5 |  | xpiundir |  |-  ( U_ x e. A B X. _V ) = U_ x e. A ( B X. _V ) | 
						
							| 6 | 5 | ineq2i |  |-  ( C i^i ( U_ x e. A B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) | 
						
							| 7 |  | iunin2 |  |-  U_ x e. A ( C i^i ( B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) | 
						
							| 8 | 6 7 | eqtr4i |  |-  ( C i^i ( U_ x e. A B X. _V ) ) = U_ x e. A ( C i^i ( B X. _V ) ) | 
						
							| 9 | 4 8 | eqtr4i |  |-  U_ x e. A ( C |` B ) = ( C i^i ( U_ x e. A B X. _V ) ) | 
						
							| 10 | 1 9 | eqtr4i |  |-  ( C |` U_ x e. A B ) = U_ x e. A ( C |` B ) |