Step |
Hyp |
Ref |
Expression |
1 |
|
reslmhm.u |
|- U = ( LSubSp ` S ) |
2 |
|
reslmhm.r |
|- R = ( S |`s X ) |
3 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
4 |
2 1
|
lsslmod |
|- ( ( S e. LMod /\ X e. U ) -> R e. LMod ) |
5 |
3 4
|
sylan |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> R e. LMod ) |
6 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
7 |
6
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> T e. LMod ) |
8 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
9 |
1
|
lsssubg |
|- ( ( S e. LMod /\ X e. U ) -> X e. ( SubGrp ` S ) ) |
10 |
3 9
|
sylan |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X e. ( SubGrp ` S ) ) |
11 |
2
|
resghm |
|- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( R GrpHom T ) ) |
12 |
8 10 11
|
syl2an2r |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( F |` X ) e. ( R GrpHom T ) ) |
13 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
14 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
15 |
13 14
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
16 |
2 13
|
resssca |
|- ( X e. U -> ( Scalar ` S ) = ( Scalar ` R ) ) |
17 |
15 16
|
sylan9eq |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Scalar ` T ) = ( Scalar ` R ) ) |
18 |
|
simpll |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> F e. ( S LMHom T ) ) |
19 |
|
simprl |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
20 1
|
lssss |
|- ( X e. U -> X C_ ( Base ` S ) ) |
22 |
21
|
adantl |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X C_ ( Base ` S ) ) |
23 |
22
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> X C_ ( Base ` S ) ) |
24 |
2 20
|
ressbas2 |
|- ( X C_ ( Base ` S ) -> X = ( Base ` R ) ) |
25 |
22 24
|
syl |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X = ( Base ` R ) ) |
26 |
25
|
eleq2d |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( b e. X <-> b e. ( Base ` R ) ) ) |
27 |
26
|
biimpar |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ b e. ( Base ` R ) ) -> b e. X ) |
28 |
27
|
adantrl |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> b e. X ) |
29 |
23 28
|
sseldd |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> b e. ( Base ` S ) ) |
30 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
31 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
32 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
33 |
13 30 20 31 32
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
34 |
18 19 29 33
|
syl3anc |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
35 |
3
|
adantr |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> S e. LMod ) |
36 |
35
|
adantr |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> S e. LMod ) |
37 |
|
simplr |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> X e. U ) |
38 |
13 31 30 1
|
lssvscl |
|- ( ( ( S e. LMod /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. X ) ) -> ( a ( .s ` S ) b ) e. X ) |
39 |
36 37 19 28 38
|
syl22anc |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( a ( .s ` S ) b ) e. X ) |
40 |
39
|
fvresd |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( F ` ( a ( .s ` S ) b ) ) ) |
41 |
|
fvres |
|- ( b e. X -> ( ( F |` X ) ` b ) = ( F ` b ) ) |
42 |
41
|
oveq2d |
|- ( b e. X -> ( a ( .s ` T ) ( ( F |` X ) ` b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
43 |
28 42
|
syl |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( a ( .s ` T ) ( ( F |` X ) ` b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
44 |
34 40 43
|
3eqtr4d |
|- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
45 |
44
|
ralrimivva |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
46 |
16
|
adantl |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Scalar ` S ) = ( Scalar ` R ) ) |
47 |
46
|
fveq2d |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` R ) ) ) |
48 |
2 31
|
ressvsca |
|- ( X e. U -> ( .s ` S ) = ( .s ` R ) ) |
49 |
48
|
adantl |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( .s ` S ) = ( .s ` R ) ) |
50 |
49
|
oveqd |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( a ( .s ` S ) b ) = ( a ( .s ` R ) b ) ) |
51 |
50
|
fveqeq2d |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
52 |
51
|
ralbidv |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
53 |
47 52
|
raleqbidv |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
54 |
45 53
|
mpbid |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
55 |
12 17 54
|
3jca |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( ( F |` X ) e. ( R GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` R ) /\ A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
56 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
57 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
58 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
59 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
60 |
56 14 57 58 59 32
|
islmhm |
|- ( ( F |` X ) e. ( R LMHom T ) <-> ( ( R e. LMod /\ T e. LMod ) /\ ( ( F |` X ) e. ( R GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` R ) /\ A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) ) |
61 |
5 7 55 60
|
syl21anbrc |
|- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( F |` X ) e. ( R LMHom T ) ) |