| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm.u |  |-  U = ( S |`s X ) | 
						
							| 2 |  | mhmrcl2 |  |-  ( F e. ( S MndHom T ) -> T e. Mnd ) | 
						
							| 3 | 1 | submmnd |  |-  ( X e. ( SubMnd ` S ) -> U e. Mnd ) | 
						
							| 4 | 2 3 | anim12ci |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( U e. Mnd /\ T e. Mnd ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 6 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 7 | 5 6 | mhmf |  |-  ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 8 | 5 | submss |  |-  ( X e. ( SubMnd ` S ) -> X C_ ( Base ` S ) ) | 
						
							| 9 |  | fssres |  |-  ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) | 
						
							| 10 | 7 8 9 | syl2an |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) | 
						
							| 11 | 8 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X C_ ( Base ` S ) ) | 
						
							| 12 | 1 5 | ressbas2 |  |-  ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X = ( Base ` U ) ) | 
						
							| 14 | 13 | feq2d |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) | 
						
							| 15 | 10 14 | mpbid |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) | 
						
							| 16 |  | simpll |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> F e. ( S MndHom T ) ) | 
						
							| 17 | 8 | ad2antlr |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> X C_ ( Base ` S ) ) | 
						
							| 18 |  | simprl |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) | 
						
							| 19 | 17 18 | sseldd |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. ( Base ` S ) ) | 
						
							| 20 |  | simprr |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) | 
						
							| 21 | 17 20 | sseldd |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. ( Base ` S ) ) | 
						
							| 22 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 23 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 24 | 5 22 23 | mhmlin |  |-  ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 25 | 16 19 21 24 | syl3anc |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 26 | 22 | submcl |  |-  ( ( X e. ( SubMnd ` S ) /\ x e. X /\ y e. X ) -> ( x ( +g ` S ) y ) e. X ) | 
						
							| 27 | 26 | 3expb |  |-  ( ( X e. ( SubMnd ` S ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) | 
						
							| 28 | 27 | adantll |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) | 
						
							| 29 | 28 | fvresd |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) | 
						
							| 30 |  | fvres |  |-  ( x e. X -> ( ( F |` X ) ` x ) = ( F ` x ) ) | 
						
							| 31 |  | fvres |  |-  ( y e. X -> ( ( F |` X ) ` y ) = ( F ` y ) ) | 
						
							| 32 | 30 31 | oveqan12d |  |-  ( ( x e. X /\ y e. X ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 34 | 25 29 33 | 3eqtr4d |  |-  ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) | 
						
							| 35 | 34 | ralrimivva |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) | 
						
							| 36 | 1 22 | ressplusg |  |-  ( X e. ( SubMnd ` S ) -> ( +g ` S ) = ( +g ` U ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( +g ` S ) = ( +g ` U ) ) | 
						
							| 38 | 37 | oveqd |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` U ) y ) ) | 
						
							| 39 | 38 | fveqeq2d |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) | 
						
							| 40 | 13 39 | raleqbidv |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) | 
						
							| 41 | 13 40 | raleqbidv |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) | 
						
							| 42 | 35 41 | mpbid |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) | 
						
							| 43 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 44 | 43 | subm0cl |  |-  ( X e. ( SubMnd ` S ) -> ( 0g ` S ) e. X ) | 
						
							| 45 | 44 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) e. X ) | 
						
							| 46 | 45 | fvresd |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( F ` ( 0g ` S ) ) ) | 
						
							| 47 | 1 43 | subm0 |  |-  ( X e. ( SubMnd ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) = ( 0g ` U ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( ( F |` X ) ` ( 0g ` U ) ) ) | 
						
							| 50 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 51 | 43 50 | mhm0 |  |-  ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 53 | 46 49 52 | 3eqtr3d |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) | 
						
							| 54 | 15 42 53 | 3jca |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) | 
						
							| 55 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 56 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 57 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 58 | 55 6 56 23 57 50 | ismhm |  |-  ( ( F |` X ) e. ( U MndHom T ) <-> ( ( U e. Mnd /\ T e. Mnd ) /\ ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) ) | 
						
							| 59 | 4 54 58 | sylanbrc |  |-  ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) e. ( U MndHom T ) ) |