Step |
Hyp |
Ref |
Expression |
1 |
|
resmhm.u |
|- U = ( S |`s X ) |
2 |
|
mhmrcl2 |
|- ( F e. ( S MndHom T ) -> T e. Mnd ) |
3 |
1
|
submmnd |
|- ( X e. ( SubMnd ` S ) -> U e. Mnd ) |
4 |
2 3
|
anim12ci |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( U e. Mnd /\ T e. Mnd ) ) |
5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
6 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
7 |
5 6
|
mhmf |
|- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
8 |
5
|
submss |
|- ( X e. ( SubMnd ` S ) -> X C_ ( Base ` S ) ) |
9 |
|
fssres |
|- ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
11 |
8
|
adantl |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X C_ ( Base ` S ) ) |
12 |
1 5
|
ressbas2 |
|- ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) |
13 |
11 12
|
syl |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X = ( Base ` U ) ) |
14 |
13
|
feq2d |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) |
15 |
10 14
|
mpbid |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) |
16 |
|
simpll |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> F e. ( S MndHom T ) ) |
17 |
8
|
ad2antlr |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> X C_ ( Base ` S ) ) |
18 |
|
simprl |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
19 |
17 18
|
sseldd |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. ( Base ` S ) ) |
20 |
|
simprr |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
21 |
17 20
|
sseldd |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. ( Base ` S ) ) |
22 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
23 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
24 |
5 22 23
|
mhmlin |
|- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
25 |
16 19 21 24
|
syl3anc |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
26 |
22
|
submcl |
|- ( ( X e. ( SubMnd ` S ) /\ x e. X /\ y e. X ) -> ( x ( +g ` S ) y ) e. X ) |
27 |
26
|
3expb |
|- ( ( X e. ( SubMnd ` S ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
28 |
27
|
adantll |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
29 |
28
|
fvresd |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) |
30 |
|
fvres |
|- ( x e. X -> ( ( F |` X ) ` x ) = ( F ` x ) ) |
31 |
|
fvres |
|- ( y e. X -> ( ( F |` X ) ` y ) = ( F ` y ) ) |
32 |
30 31
|
oveqan12d |
|- ( ( x e. X /\ y e. X ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
33 |
32
|
adantl |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
34 |
25 29 33
|
3eqtr4d |
|- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
35 |
34
|
ralrimivva |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
36 |
1 22
|
ressplusg |
|- ( X e. ( SubMnd ` S ) -> ( +g ` S ) = ( +g ` U ) ) |
37 |
36
|
adantl |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( +g ` S ) = ( +g ` U ) ) |
38 |
37
|
oveqd |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` U ) y ) ) |
39 |
38
|
fveqeq2d |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
40 |
13 39
|
raleqbidv |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
41 |
13 40
|
raleqbidv |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
42 |
35 41
|
mpbid |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
43 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
44 |
43
|
subm0cl |
|- ( X e. ( SubMnd ` S ) -> ( 0g ` S ) e. X ) |
45 |
44
|
adantl |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) e. X ) |
46 |
45
|
fvresd |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( F ` ( 0g ` S ) ) ) |
47 |
1 43
|
subm0 |
|- ( X e. ( SubMnd ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
48 |
47
|
adantl |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
49 |
48
|
fveq2d |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( ( F |` X ) ` ( 0g ` U ) ) ) |
50 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
51 |
43 50
|
mhm0 |
|- ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
52 |
51
|
adantr |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
53 |
46 49 52
|
3eqtr3d |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) |
54 |
15 42 53
|
3jca |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) |
55 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
56 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
57 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
58 |
55 6 56 23 57 50
|
ismhm |
|- ( ( F |` X ) e. ( U MndHom T ) <-> ( ( U e. Mnd /\ T e. Mnd ) /\ ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) ) |
59 |
4 54 58
|
sylanbrc |
|- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) e. ( U MndHom T ) ) |