| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm2.u |  |-  U = ( T |`s X ) | 
						
							| 2 |  | mhmrcl1 |  |-  ( F e. ( S MndHom U ) -> S e. Mnd ) | 
						
							| 3 |  | submrcl |  |-  ( X e. ( SubMnd ` T ) -> T e. Mnd ) | 
						
							| 4 | 2 3 | anim12i |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( S e. Mnd /\ T e. Mnd ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 6 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 7 | 5 6 | mhmf |  |-  ( F e. ( S MndHom U ) -> F : ( Base ` S ) --> ( Base ` U ) ) | 
						
							| 8 | 1 | submbas |  |-  ( X e. ( SubMnd ` T ) -> X = ( Base ` U ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 10 | 9 | submss |  |-  ( X e. ( SubMnd ` T ) -> X C_ ( Base ` T ) ) | 
						
							| 11 | 8 10 | eqsstrrd |  |-  ( X e. ( SubMnd ` T ) -> ( Base ` U ) C_ ( Base ` T ) ) | 
						
							| 12 |  | fss |  |-  ( ( F : ( Base ` S ) --> ( Base ` U ) /\ ( Base ` U ) C_ ( Base ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 13 | 7 11 12 | syl2an |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 15 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 16 | 5 14 15 | mhmlin |  |-  ( ( F e. ( S MndHom U ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 17 | 16 | 3expb |  |-  ( ( F e. ( S MndHom U ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 19 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 20 | 1 19 | ressplusg |  |-  ( X e. ( SubMnd ` T ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 22 | 21 | oveqd |  |-  ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 23 | 18 22 | eqtr4d |  |-  ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 27 | 25 26 | mhm0 |  |-  ( F e. ( S MndHom U ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) | 
						
							| 29 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 30 | 1 29 | subm0 |  |-  ( X e. ( SubMnd ` T ) -> ( 0g ` T ) = ( 0g ` U ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( 0g ` T ) = ( 0g ` U ) ) | 
						
							| 32 | 28 31 | eqtr4d |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 33 | 13 24 32 | 3jca |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) | 
						
							| 34 | 5 9 14 19 25 29 | ismhm |  |-  ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) | 
						
							| 35 | 4 33 34 | sylanbrc |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |