| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm2.u |  |-  U = ( T |`s X ) | 
						
							| 2 |  | mhmrcl1 |  |-  ( F e. ( S MndHom T ) -> S e. Mnd ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> S e. Mnd ) | 
						
							| 4 | 1 | submmnd |  |-  ( X e. ( SubMnd ` T ) -> U e. Mnd ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> U e. Mnd ) | 
						
							| 6 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 7 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 8 | 6 7 | mhmf |  |-  ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 10 | 9 | ffnd |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F Fn ( Base ` S ) ) | 
						
							| 11 |  | simplr |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ran F C_ X ) | 
						
							| 12 |  | df-f |  |-  ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) | 
						
							| 13 | 10 11 12 | sylanbrc |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> X ) | 
						
							| 14 | 1 | submbas |  |-  ( X e. ( SubMnd ` T ) -> X = ( Base ` U ) ) | 
						
							| 15 | 14 | ad2antrr |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> X = ( Base ` U ) ) | 
						
							| 16 | 15 | feq3d |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) | 
						
							| 17 | 13 16 | mpbid |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) | 
						
							| 18 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 19 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 20 | 6 18 19 | mhmlin |  |-  ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 21 | 20 | 3expb |  |-  ( ( F e. ( S MndHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 22 | 21 | adantll |  |-  ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 23 | 1 19 | ressplusg |  |-  ( X e. ( SubMnd ` T ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 24 | 23 | ad3antrrr |  |-  ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 25 | 24 | oveqd |  |-  ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 26 | 22 25 | eqtrd |  |-  ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 27 | 26 | ralrimivva |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 29 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 30 | 28 29 | mhm0 |  |-  ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 32 | 1 29 | subm0 |  |-  ( X e. ( SubMnd ` T ) -> ( 0g ` T ) = ( 0g ` U ) ) | 
						
							| 33 | 32 | ad2antrr |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( 0g ` T ) = ( 0g ` U ) ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) | 
						
							| 35 | 17 27 34 | 3jca |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) | 
						
							| 36 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 37 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 38 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 39 | 6 36 18 37 28 38 | ismhm |  |-  ( F e. ( S MndHom U ) <-> ( ( S e. Mnd /\ U e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) ) | 
						
							| 40 | 3 5 35 39 | syl21anbrc |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F e. ( S MndHom U ) ) | 
						
							| 41 | 1 | resmhm2 |  |-  ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) | 
						
							| 42 | 41 | ancoms |  |-  ( ( X e. ( SubMnd ` T ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) | 
						
							| 43 | 42 | adantlr |  |-  ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) | 
						
							| 44 | 40 43 | impbida |  |-  ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |