Step |
Hyp |
Ref |
Expression |
1 |
|
resmhm2.u |
|- U = ( T |`s X ) |
2 |
|
mhmrcl1 |
|- ( F e. ( S MndHom T ) -> S e. Mnd ) |
3 |
2
|
adantl |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> S e. Mnd ) |
4 |
1
|
submmnd |
|- ( X e. ( SubMnd ` T ) -> U e. Mnd ) |
5 |
4
|
ad2antrr |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> U e. Mnd ) |
6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
7 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
8 |
6 7
|
mhmf |
|- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
9 |
8
|
adantl |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
10 |
9
|
ffnd |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F Fn ( Base ` S ) ) |
11 |
|
simplr |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ran F C_ X ) |
12 |
|
df-f |
|- ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) |
13 |
10 11 12
|
sylanbrc |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> X ) |
14 |
1
|
submbas |
|- ( X e. ( SubMnd ` T ) -> X = ( Base ` U ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> X = ( Base ` U ) ) |
16 |
15
|
feq3d |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) |
17 |
13 16
|
mpbid |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
18 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
19 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
20 |
6 18 19
|
mhmlin |
|- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
21 |
20
|
3expb |
|- ( ( F e. ( S MndHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
22 |
21
|
adantll |
|- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
23 |
1 19
|
ressplusg |
|- ( X e. ( SubMnd ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
24 |
23
|
ad3antrrr |
|- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
25 |
24
|
oveqd |
|- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
26 |
22 25
|
eqtrd |
|- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
27 |
26
|
ralrimivva |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
28 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
29 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
30 |
28 29
|
mhm0 |
|- ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
31 |
30
|
adantl |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
32 |
1 29
|
subm0 |
|- ( X e. ( SubMnd ` T ) -> ( 0g ` T ) = ( 0g ` U ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( 0g ` T ) = ( 0g ` U ) ) |
34 |
31 33
|
eqtrd |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) |
35 |
17 27 34
|
3jca |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) |
36 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
37 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
38 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
39 |
6 36 18 37 28 38
|
ismhm |
|- ( F e. ( S MndHom U ) <-> ( ( S e. Mnd /\ U e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) ) |
40 |
3 5 35 39
|
syl21anbrc |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F e. ( S MndHom U ) ) |
41 |
1
|
resmhm2 |
|- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |
42 |
41
|
ancoms |
|- ( ( X e. ( SubMnd ` T ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) |
43 |
42
|
adantlr |
|- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) |
44 |
40 43
|
impbida |
|- ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |