| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndissubm.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mndissubm.s |  |-  S = ( Base ` H ) | 
						
							| 3 |  | mndissubm.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 | 1 2 3 | mndissubm |  |-  ( ( G e. Mnd /\ H e. Mnd ) -> ( ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S e. ( SubMnd ` G ) ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S e. ( SubMnd ` G ) ) | 
						
							| 6 |  | simpl |  |-  ( ( G e. Mnd /\ H e. Mnd ) -> G e. Mnd ) | 
						
							| 7 |  | 3simpa |  |-  ( ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> ( S C_ B /\ .0. e. S ) ) | 
						
							| 8 | 6 7 | anim12i |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( G e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) | 
						
							| 9 | 8 | biantrud |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( ( G |`s S ) e. Mnd <-> ( ( G |`s S ) e. Mnd /\ ( G e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) ) ) | 
						
							| 10 |  | an21 |  |-  ( ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) <-> ( ( G |`s S ) e. Mnd /\ ( G e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) ) | 
						
							| 11 | 9 10 | bitr4di |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( ( G |`s S ) e. Mnd <-> ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) ) ) | 
						
							| 12 | 1 3 | issubmndb |  |-  ( S e. ( SubMnd ` G ) <-> ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) ) | 
						
							| 13 | 11 12 | bitr4di |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( ( G |`s S ) e. Mnd <-> S e. ( SubMnd ` G ) ) ) | 
						
							| 14 | 5 13 | mpbird |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( G |`s S ) e. Mnd ) | 
						
							| 15 | 14 | ex |  |-  ( ( G e. Mnd /\ H e. Mnd ) -> ( ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> ( G |`s S ) e. Mnd ) ) |